Combinaison barycentriqueEn géométrie vectorielle, une combinaison barycentrique ou combinaison affine de vecteurs est une combinaison linéaire dont la somme des coefficients est égale à 1. L’expression s’emploie par défaut pour une somme finie, mais parfois aussi pour la limite d’une série sous réserve de convergence. Les combinaisons barycentriques correspondent ainsi aux barycentres des vecteurs vus comme des points de l’espace affine associé, et l’ensemble de ces combinaisons barycentriques constitue le sous-espace affine engendré par ces points.
Compression artifactA compression artifact (or artefact) is a noticeable distortion of media (including , audio, and video) caused by the application of lossy compression. Lossy data compression involves discarding some of the media's data so that it becomes small enough to be stored within the desired or transmitted (streamed) within the available bandwidth (known as the data rate or bit rate). If the compressor cannot store enough data in the compressed version, the result is a loss of quality, or introduction of artifacts.
Algorithme de compression sans pertevignette|Comparaison de la compression d'image entre les formats JPG (à gauche) et PNG (à droite). PNG utilise une compression sans perte. On appelle algorithme de compression sans perte toute procédure de codage ayant pour objectif de représenter une certaine quantité d'information en utilisant ou en occupant un espace plus petit, permettant ainsi une reconstruction exacte des données d'origine. C'est-à-dire que la compression sans perte englobe les techniques permettant de générer un duplicata exact du flux de données d'entrée après un cycle de compression/expansion.
Factorisation de CholeskyLa factorisation de Cholesky, nommée d'après André-Louis Cholesky, consiste, pour une matrice symétrique définie positive , à déterminer une matrice triangulaire inférieure telle que : . La matrice est en quelque sorte une « racine carrée » de . Cette décomposition permet notamment de calculer la matrice inverse , de calculer le déterminant de A (égal au carré du produit des éléments diagonaux de ) ou encore de simuler une loi multinormale. Elle est aussi utilisée en chimie quantique pour accélérer les calculs (voir Décomposition de Cholesky (chimie quantique)).
Conical combinationGiven a finite number of vectors in a real vector space, a conical combination, conical sum, or weighted sum of these vectors is a vector of the form where are non-negative real numbers. The name derives from the fact that a conical sum of vectors defines a cone (possibly in a lower-dimensional subspace). The set of all conical combinations for a given set S is called the conical hull of S and denoted cone(S) or coni(S). That is, By taking k = 0, it follows the zero vector (origin) belongs to all conical hulls (since the summation becomes an empty sum).
Indépendance linéaireEn algèbre linéaire, étant donné une famille de vecteurs d'un même espace vectoriel, les vecteurs de la famille sont linéairement indépendants, ou forment une famille libre, si la seule combinaison linéaire de ces vecteurs qui soit égale au vecteur nul est celle dont tous les coefficients sont nuls. Cela revient à dire qu'aucun des vecteurs de la famille n'est combinaison linéaire des autres. Dans le cas où des vecteurs ne sont pas linéairement indépendants, on dit qu'ils sont linéairement dépendants, ou qu'ils forment une famille liée.
Compression d'imageLa compression d'image est une application de la compression de données sur des . Cette compression a pour utilité de réduire la redondance des données d'une image afin de pouvoir l'emmagasiner sans occuper beaucoup d'espace ou la transmettre rapidement. La compression d'image peut être effectuée avec perte de données ou sans perte. La compression sans perte est souvent préférée là où la netteté des traits est primordiale : schémas, dessins techniques, icônes, bandes dessinées.
Décomposition QREn algèbre linéaire, la décomposition QR (appelée aussi, factorisation QR ou décomposition QU) d'une matrice A est une décomposition de la forme où Q est une matrice orthogonale (QQ=I), et R une matrice triangulaire supérieure. Ce type de décomposition est souvent utilisé pour le calcul de solutions de systèmes linéaires non carrés, notamment pour déterminer la pseudo-inverse d'une matrice. En effet, les systèmes linéaires AX = Y peuvent alors s'écrire : QRX = Y ou RX = QY.
Traitement du signalLe traitement du signal est la discipline qui développe et étudie les techniques de traitement, d'analyse et d' des . Parmi les types d'opérations possibles sur ces signaux, on peut dénoter le contrôle, le filtrage, la compression et la transmission de données, la réduction du bruit, la déconvolution, la prédiction, l'identification, la classification Bien que cette discipline trouve son origine dans les sciences de l'ingénieur (particulièrement l'électronique et l'automatique), elle fait aujourd'hui largement appel à de nombreux domaines des mathématiques, comme la , les processus stochastiques, les espaces vectoriels et l'algèbre linéaire et des mathématiques appliquées, notamment la théorie de l'information, l'optimisation ou encore l'analyse numérique.
Système de fonctions itéréesvignette|Attracteur de deux similitudes et . En mathématiques, un système de fonctions itérées (SFI ou encore IFS, acronyme du terme anglais Iterated Function System) est un outil pour construire des fractales. Plus précisément, l'attracteur d'un système de fonctions itérées est une forme fractale autosimilaire faite de la réunion de copies d'elle-même, chaque copie étant obtenue en transformant l'une d'elles par une fonction du système. La théorie a été formulée lors d'un séjour à l'université de Princeton par John Hutchinson en 1980.