FerroélectricitéOn appelle ferroélectricité la propriété selon laquelle un matériau possède une polarisation électrique à l'état spontané, polarisation qui peut être renversée par l'application d'un champ électrique extérieur. La signature d'un matériau ferroélectrique est le cycle d'hystérésis de la polarisation en fonction du champ électrique appliqué. Le préfixe ferro- fut emprunté au ferromagnétisme par analogie.
Fonction de répartitionEn théorie des probabilités, la fonction de répartition, ou fonction de distribution cumulative, d'une variable aléatoire réelle X est la fonction F_X qui, à tout réel x, associe la probabilité d’obtenir une valeur inférieure ou égale : Cette fonction est caractéristique de la loi de probabilité de la variable aléatoire.
Fonction de répartition empiriqueEn statistiques, une fonction de répartition empirique est une fonction de répartition qui attribue la probabilité 1/n à chacun des n nombres dans un échantillon. Soit X,...,X un échantillon de variables iid définies sur un espace de probabilité , à valeurs dans , avec pour fonction de répartition F. La fonction de répartition empirique de l'échantillon est définie par : où est la fonction indicatrice de l'événement A. Pour chaque ω, l'application est une fonction en escalier, fonction de répartition de la loi de probabilité uniforme sur l'ensemble .
Fonction quantileEn probabilités, la fonction quantile est une fonction qui définit les quantiles. Soit X une variable aléatoire et F sa fonction de répartition, la fonction quantile est définie par pour toute valeur de , la notation désignant l’inverse généralisé à gauche de . Si F est une fonction strictement croissante et continue, alors est l'unique valeur de telle que . correspond alors à la fonction réciproque de , notée . En revanche, pour les lois discrètes, les fonctions de répartition sont toutes en escalier, d'où l'intérêt de la définition précédente.
Couche minceUne couche mince () est un revêtement dont l’épaisseur peut varier de quelques couches atomiques à une dizaine de micromètres. Ces revêtements modifient les propriétés du substrat sur lesquels ils sont déposés. Ils sont principalement utilisés : dans la fabrication de composants électroniques telles des cellules photovoltaïques en raison de leurs propriétés isolantes ou conductrices ; pour la protection d'objets afin d'améliorer les propriétés mécaniques, de résistance à l’usure, à la corrosion ou en servant de barrière thermique.
Loi de Cauchy (probabilités)La loi de Cauchy, appelée aussi loi de Lorentz, est une loi de probabilité continue qui doit son nom au mathématicien Augustin Louis Cauchy. Une variable aléatoire X suit une loi de Cauchy si sa densité , dépendant des deux paramètres et ( > 0) est définie par : La fonction ainsi définie s'appelle une lorentzienne. Elle apparaît par exemple en spectroscopie pour modéliser des raies d'émission. Cette distribution est symétrique par rapport à (paramètre de position), le paramètre donnant une information sur l'étalement de la fonction (paramètre d'échelle).
Intervalle de confiancevignette|Chaque ligne montre 20 échantillons tirés selon la loi normale de moyenne μ. On y montre l'intervalle de confiance de niveau 50% pour la moyenne correspondante aux 20 échantillons, marquée par un losange. Si l'intervalle contient μ, il est bleu ; sinon il est rouge. En mathématiques, plus précisément en théorie des probabilités et en statistiques, un intervalle de confiance encadre une valeur réelle que l’on cherche à estimer à l’aide de mesures prises par un procédé aléatoire.
Intervalle (musique)En musique, l'intervalle entre deux notes est l'écart entre leurs hauteurs respectives. Cet intervalle est dit harmonique si les deux notes sont simultanées, mélodique si les deux notes sont émises successivement. En acoustique, l'intervalle entre deux sons harmoniques est le rapport de leurs fréquences. Chaque intervalle d'une échelle musicale, elle-même distinctive d'un type de musique (indienne, occidentale, musique orientale, etc.). La perception des intervalles diffère selon les cultures.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Gestion de la mémoireLa gestion de la mémoire est une forme de gestion des ressources appliquée à la mémoire de l'ordinateur. L'exigence essentielle de la gestion de la mémoire est de fournir des moyens d'allouer dynamiquement des portions de mémoire aux programmes à leur demande, et de les libérer pour réutilisation lorsqu'elles ne sont plus nécessaires. Ceci est essentiel pour tout système informatique avancé où plus d'un processus peuvent être en cours à tout moment. Catégorie:Architecture informatique Catégorie:Pages avec