Largeur arborescenteEn théorie des graphes et en informatique théorique, la largeur arborescente ou largeur d'arbre d'un graphe (treewidth en anglais) est un nombre qui, intuitivement, mesure s'il est proche d'un arbre. Elle peut être définie de plusieurs manières, notamment en utilisant la décomposition arborescente. Souvent, un problème algorithmique facile sur les arbres est en fait facile pour les graphes qui ressemblent à des arbres. Ainsi, ce paramètre est souvent utilisé en algorithmique de graphes, notamment pour les schémas d'approximation polynomiaux et complexité paramétrée.
Tree-depthIn graph theory, the tree-depth of a connected undirected graph is a numerical invariant of , the minimum height of a Trémaux tree for a supergraph of . This invariant and its close relatives have gone under many different names in the literature, including vertex ranking number, ordered chromatic number, and minimum elimination tree height; it is also closely related to the cycle rank of directed graphs and the star height of regular languages.
Graphe planaireDans la théorie des graphes, un graphe planaire est un graphe qui a la particularité de pouvoir se représenter sur un plan sans qu'aucune arête (ou arc pour un graphe orienté) n'en croise une autre. Autrement dit, ces graphes sont précisément ceux que l'on peut plonger dans le plan, ou encore les graphes dont le nombre de croisements est nul. Les méthodes associées à ces graphes permettent de résoudre des problèmes comme l'énigme des trois maisons et d'autres plus difficiles comme le théorème des quatre couleurs.
Théorème de CourcelleEn algorithmique et en théorie de la complexité, le théorème de Courcelle est le suivant : C'est un métathéorème, dans le sens où il concerne une classe de problèmes algorithmiques. Le théorème est dû à Bruno Courcelle. Dans le contexte de ce théorème, un graphe est donné par un ensemble de sommets et une relation d'adjacence , et la restriction à la logique monadique signifie que la propriété étudiée peut contenir des quantificateurs sur des ensembles de sommets (quantificateurs du second ordre sur des prédicats monadiques), mais pas de quantificateurs sur des ensembles d'arcs (ces quantificateurs du second ordre porteraient sur des prédicats binaires).
List of graphsThis partial list of graphs contains definitions of graphs and graph families. For collected definitions of graph theory terms that do not refer to individual graph types, such as vertex and path, see Glossary of graph theory. For links to existing articles about particular kinds of graphs, see . Some of the finite structures considered in graph theory have names, sometimes inspired by the graph's topology, and sometimes after their discoverer.
Décomposition arborescenteEn théorie des graphes, une décomposition arborescente ou décomposition en arbre (en anglais : tree-decomposition) consiste en une décomposition d'un graphe en séparateurs (sous-ensembles de sommets dont la suppression rend le graphe non connexe), connectés dans un arbre. Cette décomposition permet de définir une autre notion importante, la largeur arborescente ou largeur d'arbre (treewidth). Cette méthode a été proposée par Paul Seymour et Neil Robertson dans le cadre de leur théorie sur les mineurs d'un graphe.
Temps de calcul pseudo-polynomialEn informatique théorique, et notamment en théorie de la complexité, un algorithme est appelé pseudo-polynomial si sa complexité en temps est un polynôme en la valeur numérique de l'entrée (mais pas nécessairement en la taille en mémoire de l'entrée). Considérons le problème du test de primalité. On peut vérifier qu'un entier naturel donné n est premier en testant qu'il n'est divisible par aucun des entiers . Cela exige divisions, de sorte que le temps pris par cet algorithme naïf est linéaire en la valeur n .
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Réduction polynomialeUne réduction polynomiale est un outil d'informatique théorique, plus particulièrement de théorie de la complexité. C'est une classe particulière de réductions particulièrement importante, notamment pour le problème P = NP. Dans le cadre des langages formels pour les problèmes de décision, on dit qu'un langage est réductible en temps polynomial à un langage (noté ) s'il existe une fonction calculable en temps polynomial telle que pour tout , si et seulement si .
Largeur de cliquevignette|upright=1.6|Construction d'un graphe (ici un graphe à distance héréditaire) de largeur de clique 3 par une succession d'unions disjointes, de renommages et de fusions d'étiquettes. Les étiquettes des sommets sont affichées sous forme de couleurs. En théorie des graphes, la largeur de clique d'un graphe est l'un des paramètres qui décrit la complexité structurelle du graphe ; il est étroitement lié à largeur arborescente, mais contrairement à celle-ci, elle peut être bornée même pour des graphes denses .