DémarcheLa démarche est le motif du mouvement des membres des animaux pendant leur déplacement. La plupart des animaux utilisent différents types de démarches en fonction de la vitesse, du terrain, des besoins de manœuvrer et de l'efficacité énergétique. Les diagrammes de démarche de Milton Hildebrand sont généralement utilisés par les physiologistes dans l'étude de la locomotion. Il existe différents dispositifs permettant d'étudier les démarches. Parmi les plus anciens on peut citer le fusil photographique d'Étienne-Jules Marey en 1872, puis par Eadweard Muybridge en 1878.
Méthode de GalerkineEn mathématiques, dans le domaine de l'analyse numérique, les méthodes de Galerkine sont une classe de méthodes permettant de transformer un problème continu (par exemple une équation différentielle) en un problème discret. Cette approche est attribuée aux ingénieurs russes Ivan Boubnov (1911) et Boris Galerkine (1913). Cette méthode est couramment utilisée dans la méthode des éléments finis. On part de la formulation faible du problème. La solution appartient à un espace fonctionnel satisfaisant des propriétés de régularité bien définies.
Luxation congénitale de la hancheLa luxation congénitale de la hanche est une affection du nouveau-né, symptomatique de dysplasie congénitale ou développementale de l'acetabulum. Les anomalies chez le nouveau-né ou l'enfant connues sous le terme de dysplasie acétabulaire et subluxation ou luxation de la tête du fémur hors du cotyle (ou acetabulum), parce qu'ils sont présents à la naissance, sont longtemps étiquetées comme dysplasie ou luxation “congénitale” de hanche .
Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.
Centrale à inertiethumb|Gyrolaser de forme triangulaire, technologie de gyromètre couramment utilisée dans les centrales à inertie. Une centrale à inertie ou centrale inertielle est un instrument utilisé en navigation, capable d'intégrer les mouvements d'un mobile (accélération et vitesse angulaire) pour estimer son orientation (angles de roulis, de tangage et de cap), sa vitesse linéaire et sa position. L'estimation de position est relative au point de départ ou au dernier point de recalage.
OrthopédieL'orthopédie est la spécialité chirurgicale qui a pour objet la prévention et la correction des affections de l'appareil locomoteur, qui recouvrent les déformations et les malformations des os, des articulations, des muscles, des tendons et des nerfs. Le traitement chirurgical porte sur les membres supérieurs (épaule, coude et main), les membres inférieurs (hanche, genou et pied) et le rachis. Cette discipline est pratiquée par un chirurgien orthopédiste.
Méthode de JacobiLa méthode de Jacobi, due au mathématicien allemand Karl Jacobi, est une méthode itérative de résolution d'un système matriciel de la forme Ax = b. Pour cela, on utilise une suite x qui converge vers un point fixe x, solution du système d'équations linéaires. On cherche à construire, pour x donné, la suite x = F(x) avec . où est une matrice inversible. où F est une fonction affine. La matrice B = MN est alors appelée matrice de Jacobi.
Preferred frameIn theoretical physics, a preferred frame or privileged frame is usually a special hypothetical frame of reference in which the laws of physics might appear to be identifiably different (simpler) from those in other frames. In theories that apply the principle of relativity to inertial motion, physics is the same in all inertial frames, and is even the same in all frames under the principle of general relativity.
Méthode des différences finiesEn analyse numérique, la méthode des différences finies est une technique courante de recherche de solutions approchées d'équations aux dérivées partielles qui consiste à résoudre un système de relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points suffisamment proches les uns des autres. Cette méthode apparaît comme étant la plus simple à mettre en œuvre car elle procède en deux étapes : d'une part la discrétisation par différences finies des opérateurs de dérivation/différentiation, d'autre part la convergence du schéma numérique ainsi obtenu lorsque la distance entre les points diminue.
Temps newtonienEn physique, le temps newtonien définit un temps absolu qui est le même en tout point de l'Univers et indifférent au mouvement. Il a été introduit par Isaac Newton en 1687 dans ses Principia Mathematica. En 1905, Albert Einstein démontre que le temps physique n'est pas newtonien. L'idée essentielle est que le temps newtonien n'est plus un paramètre unicursal. Cela signifie que changer d'échelle de grandeur temps par une fonction t' = f(t) ne demande pour la vitesse qu'un changement V' = V/f'(t), ce qui est simplement l'expression naturelle d'un changement d'unités.