Programmation fonctionnelleLa programmation fonctionnelle est un paradigme de programmation de type déclaratif qui considère le calcul en tant qu'évaluation de fonctions mathématiques. Comme le changement d'état et la mutation des données ne peuvent pas être représentés par des évaluations de fonctions la programmation fonctionnelle ne les admet pas, au contraire elle met en avant l'application des fonctions, contrairement au modèle de programmation impérative qui met en avant les changements d'état.
AnalysisAnalysis (: analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (384–322 B.C.), though analysis as a formal concept is a relatively recent development. The word comes from the Ancient Greek ἀνάλυσις (analysis, "a breaking-up" or "an untying;" from ana- "up, throughout" and lysis "a loosening"). From it also comes the word's plural, analyses.
Programmation purement fonctionnelleEn informatique, la programmation purement fonctionnelle est un paradigme de programmation qui considère toutes les opérations comme l'évaluation de fonctions mathématiques. L'état et les objets immuables sont généralement modélisés à l'aide d'une logique temporelle, en tant que variables explicites représentant l'état du programme à chaque étape de son exécution : l'état d'une variable est transmis en tant que paramètre d'entrée d'une fonction de transformation d'état, qui renvoie l'état mis à jour en tant que partie de sa valeur de retour.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Marche à piedLa marche est un mode de locomotion naturel chez l'homme. Elle consiste en un déplacement en appui alternatif sur les pieds, en position debout et en ayant toujours au moins un point d'appui en contact avec le sol, sinon il s'agit de course. C'est un des principaux modes de déplacement, qui fait partie des modes dits « fatigants », « doux » ou « actifs », comme des moyens de transport tels que la bicyclette, la trottinette ou le patinage à roulettes, par opposition aux modes de transport motorisés parfois dits « passifs ».
Stratégie d'évaluation (informatique)Un langage de programmation utilise une stratégie d'évaluation pour déterminer « quand » évaluer les arguments à l'appel d'une fonction (ou encore, opération, méthode) et « comment » passer les arguments à la fonction. Par exemple, dans l'appel par valeur, les arguments doivent être évalués avant d'être passés à la fonction. La stratégie d'évaluation d'un langage de programmation est spécifiée par la définition du langage même. En pratique, la plupart des langages de programmation (Java, C...
Magnétoscope numériqueUn magnétoscope numérique (également appelé numériscope, DVR de l'anglais Digital Video Recorder, ou encore PVR de l'anglais Personal Video Recorder) ou au Québec ENP (Enregistreur Numérique Personnel) est un appareil électronique destiné à l'enregistrement dans une forme numérisée d'un signal vidéo et du son associé, sur divers supports tels qu'un disque dur (le plus courant), une mémoire flash (clé USB, carte SD) ou, dans les modèles plus anciens, des supports amovibles (DVD ou CD).
Méthode de Newtonvignette|Une itération de la méthode de Newton. En analyse numérique, la méthode de Newton ou méthode de Newton-Raphson est, dans son application la plus simple, un algorithme efficace pour trouver numériquement une approximation précise d'un zéro (ou racine) d'une fonction réelle d'une variable réelle. Cette méthode doit son nom aux mathématiciens anglais Isaac Newton (1643-1727) et Joseph Raphson (peut-être 1648-1715), qui furent les premiers à la décrire pour la recherche des solutions d'une équation polynomiale.
Méthode scientifiqueLa méthode scientifique désigne l'ensemble des canons guidant ou devant guider le processus de production des connaissances scientifiques, qu'il s'agisse d'observations, d'expériences, de raisonnements, ou de calculs théoriques. Très souvent, le terme de « méthode » engage l'idée implicite de son unicité, tant auprès du grand public que de certains chercheurs, qui de surcroît la confondent parfois avec la seule méthode hypothético-déductive.
Analyse des donnéesL’analyse des données (aussi appelée analyse exploratoire des données ou AED) est une famille de méthodes statistiques dont les principales caractéristiques sont d'être multidimensionnelles et descriptives. Dans l'acception française, la terminologie « analyse des données » désigne donc un sous-ensemble de ce qui est appelé plus généralement la statistique multivariée. Certaines méthodes, pour la plupart géométriques, aident à faire ressortir les relations pouvant exister entre les différentes données et à en tirer une information statistique qui permet de décrire de façon plus succincte les principales informations contenues dans ces données.