Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Courant électriqueUn courant électrique est un mouvement d'ensemble de porteurs de charges électriques, généralement des électrons, au sein d'un matériau conducteur. Ces déplacements sont imposés par l'action de la force électromagnétique, dont l'interaction avec la matière est le fondement de l'électricité. On doit au physicien français André-Marie Ampère la distinction entre courant et tension électriques.
Courants de FoucaultOn appelle courants de Foucault (Eddy currents) les courants électriques créés dans une masse conductrice, soit par la variation au cours du temps d'un champ magnétique extérieur traversant ce milieu (le flux du champ à travers le milieu), soit par un déplacement de cette masse dans un champ magnétique. Ils sont une conséquence de l'induction électromagnétique. Les courants de Foucault sont responsables d'une partie des pertes (dites pertes par courants de Foucault) dans les circuits magnétiques des machines électriques alternatives et des transformateurs.
Intégrale de cheminUne 'intégrale de chemin' (« path integral » en anglais) est une intégrale fonctionnelle, c'est-à-dire que l'intégrant est une fonctionnelle et que la somme est prise sur des fonctions, et non sur des nombres réels (ou complexes) comme pour les intégrales ordinaires. On a donc ici affaire à une intégrale en dimension infinie. Ainsi, on distinguera soigneusement l'intégrale de chemin (intégrale fonctionnelle) d'une intégrale ordinaire calculée sur un chemin de l'espace physique, que les mathématiciens appellent intégrale curviligne.
Ligne de transmissionUne ligne de transmission est un ensemble de deux conducteurs acheminant de concert un signal électrique, d'une source (ou émetteur) vers une charge (ou récepteur). On doit considérer une paire de conducteurs comme une ligne de transmission chaque fois que sa longueur est du même ordre de grandeur, ou plus, que la longueur d'onde de la fréquence la plus élevée du signal à transmettre. La charge étant connectée à l'extrémité de la ligne, la ligne permet de retrouver, sur son entrée, à son autre extrémité, la même résistance que la charge, cela quelle que soit la longueur de la ligne.
Théorème de ThéveninLe théorème de Thévenin aurait peut-être été démontré par le scientifique allemand Hermann von Helmholtz en 1853 , puis en 1883 par l'ingénieur télégraphe français Léon Charles Thévenin. Ce théorème se déduit principalement des propriétés de linéarité et du principe de superposition qui en découle. Il s'utilise pour convertir une partie d'un réseau complexe en un dipôle plus simple.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Graphe planaireDans la théorie des graphes, un graphe planaire est un graphe qui a la particularité de pouvoir se représenter sur un plan sans qu'aucune arête (ou arc pour un graphe orienté) n'en croise une autre. Autrement dit, ces graphes sont précisément ceux que l'on peut plonger dans le plan, ou encore les graphes dont le nombre de croisements est nul. Les méthodes associées à ces graphes permettent de résoudre des problèmes comme l'énigme des trois maisons et d'autres plus difficiles comme le théorème des quatre couleurs.
Condition aux limites de DirichletEn mathématiques, une condition aux limites de Dirichlet (nommée d’après Johann Dirichlet) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Dirichlet sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Condition aux limites de RobinEn mathématique, une condition aux limites de Robin (ou de troisième type) est un type de condition aux limites portant le nom du mathématicien français Victor Gustave Robin (1855-1897), qui a travaillé dans le domaine de la thermodynamique. Elle est également appelée condition aux limites de Fourier. Imposée à une équation différentielle ordinaire ou à une équation aux dérivées partielles, il s'agit d'une relation linéaire entre les valeurs de la fonction et les valeurs de la dérivée de la fonction sur le bord du domaine.