Code de répétitionLe code de répétition est une solution simple pour se prémunir des erreurs de communication dues au bruit dans un canal binaire symétrique. C'est une technique de codage de canal, c'est-à-dire un code correcteur. Il s'agit d'envoyer plusieurs copies de chaque bit à être transmis. Autrement dit, ce code de répétition encode la transmission des bits ainsi (sur trois bits) : La première chaîne de caractères est appelée le 0 logique et la deuxième, le 1 logique puisqu'elles jouent le rôle de 0 et 1 respectivement.
Canal de communication (théorie de l'information)vignette En théorie de l'information, un canal de communication ou canal de transmission est un support (physique ou non) permettant la transmission d'une certaine quantité d'information, depuis une source (ou émetteur) vers un destinataire (ou récepteur). Souvent, le canal altère l'information transmise, par exemple en ajoutant un bruit aléatoire. La quantité d'information qu'un canal de communication peut transporter est limitée : on parle de capacité du canal.
Fonction analytiquevignette|Tracé du module de la fonction gamma (son prolongement analytique) dans le plan complexe. En mathématiques, et plus précisément en analyse, une fonction analytique est une fonction d'une variable réelle ou complexe qui est développable en série entière au voisinage de chacun des points de son domaine de définition, c'est-à-dire que pour tout de ce domaine, il existe une suite donnant une expression de la fonction, valable pour tout assez proche de , sous la forme d'une série convergente : Toute fonction analytique est dérivable de dérivée analytique, ce qui implique que toute fonction analytique est indéfiniment dérivable, mais la réciproque est fausse en analyse réelle.
Analyticity of holomorphic functionsIn complex analysis, a complex-valued function of a complex variable : is said to be holomorphic at a point if it is differentiable at every point within some open disk centered at , and is said to be analytic at if in some open disk centered at it can be expanded as a convergent power series (this implies that the radius of convergence is positive). One of the most important theorems of complex analysis is that holomorphic functions are analytic and vice versa.
Fonction régulière non analytiqueEn mathématiques, les fonctions régulières (i.e. les fonctions indéfiniment dérivables) et les fonctions analytiques sont deux types courants et d'importance parmi les fonctions. Si on peut prouver que toute fonction analytique réelle est régulière, la réciproque est fausse. Une des applications des fonctions régulières à support compact est la construction de fonctions régularisantes, qui sont utilisées dans la théorie des fonctions généralisées, telle la théorie des distributions de Laurent Schwartz.
Fonction holomorphevignette|Une grille et son image par f d'une fonction holomorphe. En analyse complexe, une fonction holomorphe est une fonction à valeurs complexes, définie et dérivable en tout point d'un sous-ensemble ouvert du plan complexe C. Cette condition est beaucoup plus forte que la dérivabilité réelle. Elle entraîne (via la théorie de Cauchy) que la fonction est analytique : elle est infiniment dérivable et est égale, au voisinage de tout point de l'ouvert, à la somme de sa série de Taylor.
PapierLe papier est un matériau en feuilles minces fabriqué à partir de fibres végétales. C'est un support d'écriture et de dessin avec de nombreuses autres applications. On appelle carton un papier épais et rigide. L'usage du papier est attesté il y a en Chine. Il s'y fabrique à partir de plantes riches en cellulose. L'invention de la xylographie au en augmente l'usage et la fabrication. À la même époque, il se diffuse dans le monde musulman, où les fabricants utilisent le chiffon, puis en Occident où on lui ajoute de la colle pour l'adapter à l'écriture à la plume.
Prolongement analytiqueEn analyse complexe, la théorie du prolongement analytique détaille l'ensemble des propriétés et techniques relatives au prolongement des fonctions holomorphes (ou analytiques). Elle considère d'abord la question du prolongement dans le plan complexe. Puis elle aborde des formes plus générales d'extension qui permettent de prendre en compte les singularités et les complications topologiques qui les accompagnent. La théorie fait alors intervenir soit le concept assez ancien et peu opérant de fonction multiforme, soit le concept plus puissant de surface de Riemann.
PapeterieLe mot papeterie ou papèterie peut désigner : une usine à papier, également appelée papetière, spécialisée dans la transformation du bois, de vieux papiers, ou de pailles en papier ou d'autres fibres (chiffons) ; un magasin de fournitures de bureau ou de fournitures scolaires ; l'industrie papetière, c'est-à-dire l'industrie de fabrication du papier principalement à partir de pâte à papier ; un article de papeterie, un article fabriqué en tout ou partie avec du papier ; une petite boîte contenant le matérie