Cryptanalyse différentielleLa cryptanalyse différentielle est une méthode générique de cryptanalyse qui peut être appliquée aux algorithmes de chiffrement itératif par blocs, mais également aux algorithmes de chiffrement par flots et aux fonctions de hachage. Dans son sens le plus large, elle consiste en l'étude sur la manière dont les différences entre les données en entrée affectent les différences de leurs sorties.
Cryptanalyse linéaireLa cryptanalyse linéaire est une technique inventée par Mitsuru Matsui, chercheur chez Mitsubishi Electric. Elle date de 1993 et fut développée à l'origine pour casser l'algorithme de chiffrement symétrique DES. Ce type de cryptanalyse se base sur un concept antérieur à la découverte de Matsui : les expressions linéaires probabilistes. Ces dernières ont été étudiées par Henri Gilbert et Anne Tardy-Corfdir dans le cadre d'une attaque sur FEAL.
CryptanalyseLa cryptanalyse est la technique qui consiste à déduire un texte en clair d’un texte chiffré sans posséder la clé de chiffrement. Le processus par lequel on tente de comprendre un message en particulier est appelé une attaque. Une attaque est généralement caractérisée selon les données qu'elle nécessite : attaque sur texte chiffré seul (ciphertext-only en anglais) : le cryptanalyste possède des exemplaires chiffrés des messages, il peut faire des hypothèses sur les messages originaux qu'il ne possède pas.
Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Opérateur différentielEn mathématiques, et plus précisément en analyse, un opérateur différentiel est un opérateur agissant sur des fonctions différentiables. Lorsque la fonction est à une seule variable, l'opérateur différentiel est construit à partir des dérivées ordinaires. Lorsque la fonction est à plusieurs variables, l'opérateur différentiel est construit à partir des dérivées partielles. Un opérateur différentiel agissant sur deux fonctions est appelé opérateur bidifférentiel.
Fonction de hachage cryptographiqueUne fonction de hachage cryptographique est une fonction de hachage qui, à une donnée de taille arbitraire, associe une image de taille fixe, et dont une propriété essentielle est qu'elle est pratiquement impossible à inverser, c'est-à-dire que si l'image d'une donnée par la fonction se calcule très efficacement, le calcul inverse d'une donnée d'entrée ayant pour image une certaine valeur se révèle impossible sur le plan pratique. Pour cette raison, on dit d'une telle fonction qu'elle est à sens unique.
Fonction courbevignette|La non-linéarité des quatre fonctions booléennes 2-ary avec poids de Hamming 1 Ce sont des fonctions Bent, ainsi que les quatre compléments avec poids de Hamming 3. Ce diagramme montre la Une fonction booléenne avec un nombre pair de variables est dite fonction courbe — bent dans la terminologie anglosaxonne — si sa non-linéarité est maximale. Cela correspond à être à distance maximale — pour la distance de Hamming — de l'ensemble des fonctions booléennes linéaires, encore appelé code de Reed et Müller d'ordre 1.
Cryptanalyse différentielle impossibleEn cryptanalyse, la cryptanalyse différentielle impossible ou cryptanalyse par différentielles impossibles est une technique basée sur la cryptanalyse différentielle (1990), elle a été proposée en 1999 par Eli Biham, Adi Shamir et Alex Biryukov dans le cadre de la cryptanalyse de Skipjack. Le principe en lui-même est apparu quelques années auparavant lors d'attaques différentielles mais il n'y avait pas de méthode formellement définie.
Équation différentielle ordinaireEn mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Differential algebraIn mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra.