Chiffrement par blocvignette|un schéma de chiffrement par bloc Le chiffrement par bloc (en anglais block cipher) est une des deux grandes catégories de chiffrements modernes en cryptographie symétrique, l'autre étant le chiffrement par flot. La principale différence vient du découpage des données en blocs de taille généralement fixe. La taille de bloc est comprise entre 32 et 512 bits. Dans le milieu des années 1990, le standard était de 64 bits. Depuis 2000 et le concours AES, le standard est de 128 bits.
Cryptanalyse différentielleLa cryptanalyse différentielle est une méthode générique de cryptanalyse qui peut être appliquée aux algorithmes de chiffrement itératif par blocs, mais également aux algorithmes de chiffrement par flots et aux fonctions de hachage. Dans son sens le plus large, elle consiste en l'étude sur la manière dont les différences entre les données en entrée affectent les différences de leurs sorties.
Réseau de FeistelUn réseau de Feistel est une construction utilisée dans les algorithmes de chiffrement par bloc, nommée d'après le cryptologue d'IBM, Horst Feistel. Elle a été utilisée pour la première fois dans Lucifer et DES. Cette structure offre plusieurs avantages, le chiffrement et le déchiffrement ont une architecture similaire voire identique dans certains cas. L'implémentation matérielle est aussi plus facile avec un tel système même si les choses ont passablement changé depuis la fin des années 1970.
Chiffrement de fluxvignette|Schéma du A5/1 et ses trois registres à décalage, un chiffrement par flot utiliser pour chiffrer les communications téléphoniques mobiles. Le chiffrement de flux, chiffrement par flot ou chiffrement en continu (en anglais stream cipher) est une des deux grandes catégories de chiffrements modernes en cryptographie symétrique, l'autre étant le chiffrement par bloc. Un chiffrement par flot arrive à traiter les données de longueur quelconque et n'a pas besoin de les découper.
Cryptanalyse linéaireLa cryptanalyse linéaire est une technique inventée par Mitsuru Matsui, chercheur chez Mitsubishi Electric. Elle date de 1993 et fut développée à l'origine pour casser l'algorithme de chiffrement symétrique DES. Ce type de cryptanalyse se base sur un concept antérieur à la découverte de Matsui : les expressions linéaires probabilistes. Ces dernières ont été étudiées par Henri Gilbert et Anne Tardy-Corfdir dans le cadre d'une attaque sur FEAL.
CryptanalyseLa cryptanalyse est la technique qui consiste à déduire un texte en clair d’un texte chiffré sans posséder la clé de chiffrement. Le processus par lequel on tente de comprendre un message en particulier est appelé une attaque. Une attaque est généralement caractérisée selon les données qu'elle nécessite : attaque sur texte chiffré seul (ciphertext-only en anglais) : le cryptanalyste possède des exemplaires chiffrés des messages, il peut faire des hypothèses sur les messages originaux qu'il ne possède pas.
Équation différentielle linéaireUne équation différentielle linéaire est un cas particulier d'équation différentielle pour lequel on peut appliquer des procédés de superposition de solutions, et exploiter des résultats d'algèbre linéaire. De nombreuses équations différentielles de la physique vérifient la propriété de linéarité. De plus, les équations différentielles linéaires apparaissent naturellement en perturbant une équation différentielle (non linéaire) autour d'une de ses solutions.
Opérateur différentielEn mathématiques, et plus précisément en analyse, un opérateur différentiel est un opérateur agissant sur des fonctions différentiables. Lorsque la fonction est à une seule variable, l'opérateur différentiel est construit à partir des dérivées ordinaires. Lorsque la fonction est à plusieurs variables, l'opérateur différentiel est construit à partir des dérivées partielles. Un opérateur différentiel agissant sur deux fonctions est appelé opérateur bidifférentiel.
Équation différentielle stochastiqueUne équation différentielle stochastique (EDS) est une généralisation de la notion d'équation différentielle prenant en compte un terme de bruit blanc. Les EDS permettent de modéliser des trajectoires aléatoires, tels des cours de bourse ou les mouvements de particules soumises à des phénomènes de diffusion. Elles permettent aussi de traiter théoriquement ou numériquement des problèmes issus de la théorie des équations aux dérivées partielles.
Équation différentielle ordinaireEn mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.