Hypothèse de RiemannEn mathématiques, l'hypothèse de Riemann est une conjecture formulée en 1859 par le mathématicien allemand Bernhard Riemann, selon laquelle les zéros non triviaux de la fonction zêta de Riemann ont tous une partie réelle égale à 1/2. Sa démonstration améliorerait la connaissance de la répartition des nombres premiers et ouvrirait des nouveaux domaines aux mathématiques. Cette conjecture constitue l'un des problèmes non résolus les plus importants des mathématiques du début du : elle est l'un des vingt-trois fameux problèmes de Hilbert proposés en 1900, l'un des sept problèmes du prix du millénaire et l'un des dix-huit problèmes de Smale.
Problème algorithmiqueUn problème algorithmique est, en informatique théorique, un objet mathématique qui représente une question ou un ensemble de questions auxquelles un ordinateur devrait être en mesure de répondre. Le plus souvent, ces problèmes sont de la forme : étant donné un objet (l'instance), effectuer une certaine action ou répondre à telle question. Par exemple, le problème de la factorisation est le problème suivant : étant donné un nombre entier, trouver un facteur premier de cet entier.
Test de primalité AKSLe test de primalité AKS (aussi connu comme le test de primalité Agrawal-Kayal-Saxena et le test cyclotomique AKS) est un algorithme de preuve de primalité déterministe et généraliste (fonctionne pour tous les nombres) publié le par trois scientifiques indiens nommés Manindra Agrawal, Neeraj Kayal et Nitin Saxena (A.K.S). Ce test est le premier en mesure de déterminer la primalité d'un nombre dans un temps polynomial. Ce test a été publié dans un article scientifique intitulé « PRIMES is in P ».
Théorie des nombresTraditionnellement, la théorie des nombres est une branche des mathématiques qui s'occupe des propriétés des nombres entiers (qu'ils soient entiers naturels ou entiers relatifs). Plus généralement, le champ d'étude de cette théorie concerne une large classe de problèmes qui proviennent naturellement de l'étude des entiers. La théorie des nombres occupe une place particulière en mathématiques, à la fois par ses connexions avec de nombreux autres domaines, et par la fascination qu'exercent ses théorèmes et ses problèmes ouverts, dont les énoncés sont souvent faciles à comprendre, même pour les non-mathématiciens.
Hypothèse de Riemann généraliséeL'hypothèse de Riemann est l'une des plus importantes conjectures des mathématiques et concerne les zéros de la fonction ζ de Riemann. Divers objets géométriques et arithmétiques peuvent être décrits par ce que l'on appelle les fonctions L globales, qui sont similaires formellement à la fonction zêta de Riemann. On peut alors se poser la même question à propos des zéros de ces fonctions L, fournissant diverses généralisations de l'hypothèse de Riemann.
Méthode de factorisation de Fermatvignette|Pierre de Fermat En arithmétique modulaire, la méthode de factorisation de Fermat est un algorithme de décomposition en produit de facteurs premiers d'un entier naturel. L'intuition est la suivante. Tout entier naturel impair N se décompose en la différence de deux carrés : N = a – b. Algébriquement, cette différence se factorise en (a + b)(a – b) et, si ni a + b ni a – b n'est égal à 1, alors ce sont des facteurs non triviaux de N. Il existe une telle représentation pour tout nombre impair composé.
Polynôme minimal (théorie des corps)thumb|Carl Friedrich Gauss utilise des polynômes minimaux appelés cyclotomiques pour déterminer les polygones constructibles à la règle et au compas. En théorie des corps, le polynôme minimal sur un corps commutatif K d'un élément algébrique d'une extension de K, est le polynôme unitaire de degré minimal parmi les polynômes à coefficients dans le corps de base K qui annulent l'élément. Il divise tous ces polynômes. C'est toujours un polynôme irréductible.
Lemme de Gauss (polynômes)En mathématiques, le lemme de Gauss originel énonce que si un polynôme à coefficients entiers est produit de deux polynômes unitaires à coefficients rationnels, ceux-ci sont en fait nécessairement à coefficients entiers. Sa version moderne en est une double généralisation, remplaçant l'anneau des entiers par un anneau factoriel A, et stipulant que le produit de deux polynômes primitifs ( à coefficients premiers entre eux) est primitif. Elle permet de démontrer la factorialité de l'anneau A[X].
Discriminant d'un corps de nombresdroite|vignette|upright=1.6|Un domaine fondamental de l'anneau des entiers du corps K obtenu à partir de en adjoignant une racine de . Ce domaine fondamental se trouve à l'intérieur de . Le discriminant de K est 49 = 7. En conséquence, le volume du domaine fondamental est 7 et K n'est ramifié qu'en 7. En mathématiques, le discriminant d'un corps de nombres est un invariant numérique qui, moralement, mesure la taille de l'anneau des entiers de ce corps de nombres.
Théorie analytique des nombresdroite|vignette|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : les couleurs proches du noir indiquent des valeurs proches de zéro, alors que la teinte code l'argument de la valeur. En mathématiques, la théorie analytique des nombres est une branche de la théorie des nombres qui utilise des méthodes d'analyse mathématique pour résoudre des problèmes concernant les nombres entiers.