Interpolation au plus proche voisinLinterpolation au plus proche voisin (ou interpolation arrondie) est une méthode simple d'interpolation numérique d'un ensemble de points en dimension 1 ou supérieure (interpolation multivariée). Le problème de l'interpolation consiste à calculer une valeur approchée d'une fonction en un point quelconque à partir des valeurs de la fonction données en des points définis. L'algorithme du plus proche voisin détermine la valeur recherchée comme étant égale à la valeur au point le plus proche, sans considérer les autres valeurs connues, construisant ainsi une fonction constante par morceaux.
Interpolation multivariéeEn analyse numérique, linterpolation multivariée ou linterpolation spatiale désigne l'interpolation numérique de fonctions de plus d'une variable. Le problème est similaire à celui de l'interpolation polynomiale sur un intervalle réel : on connait les valeurs d'une fonction à interpoler aux points et l'objectif consiste à évaluer la valeur de la fonction en des points . L'interpolation multivariée est notamment utilisée en géostatistique, où elle est utilisée pour reconstruire les valeurs d'une variable régionalisée sur un domaine à partir d'échantillons connus en un nombre limité de points.
Image binaireParmi les , et en particulier, les , les images binaires sont les plus simples. Bichromes (la plupart du temps noire et blanche) elles sont ontologiquement numériques c'est-à-dire que leur codage et leur décodage peuvent être faits directement vers la base 2. Il existe deux images binaires pour représenter un point au centre d'une matrice de neuf éléments (il peut s'agir très simplement d'ampoules allumées ou éteintes) : 000 010 000 codage : 0, 2, 0 111 101 111 codage : 7, 5, 7 Niveau de gris Tramage (ou d
Interpolation numériqueEn analyse numérique (et dans son application algorithmique discrète pour le calcul numérique), l'interpolation est une opération mathématique permettant de remplacer une courbe ou une fonction par une autre courbe (ou fonction) plus simple, mais qui coïncide avec la première en un nombre fini de points (ou de valeurs) donnés au départ. Suivant le type d'interpolation, outre le fait de coïncider en un nombre fini de points ou de valeurs, il peut aussi être demandé à la courbe ou à la fonction construite de vérifier des propriétés supplémentaires.
Retouche numériqueImage editing encompasses the processes of altering s, whether they are digital photographs, traditional photo-chemical photographs, or illustrations. Traditional analog image editing is known as photo retouching, using tools such as an airbrush to modify photographs or editing illustrations with any traditional art medium. Graphic software programs, which can be broadly grouped into vector graphics editors, raster graphics editors, and 3D modelers, are the primary tools with which a user may manipulate, enhance, and transform images.
Image matricielleUne image matricielle, ou « carte de points » (de l'anglais bitmap), est une image constituée d'une matrice de points colorés. C'est-à-dire, constituée d'un tableau, d'une grille, où chaque case possède une couleur qui lui est propre et est considérée comme un point. Il s'agit donc d'une juxtaposition de points de couleurs formant, dans leur ensemble, une image. Cette expression est principalement utilisée dans les domaines de l' (infographie, informatique, photographie numérique) afin de marquer l'opposition de ce concept avec celui des .
Interpolation polynomialeEn mathématiques, en analyse numérique, l'interpolation polynomiale est une technique d'interpolation d'un ensemble de données ou d'une fonction par un polynôme. En d'autres termes, étant donné un ensemble de points (obtenu, par exemple, à la suite d'une expérience), on cherche un polynôme qui passe par tous ces points, p(xi) = yi, et éventuellement vérifie d'autres conditions, de degré si possible le plus bas. Cependant, dans le cas de l'interpolation lagrangienne, par exemple, le choix des points d'interpolation est critique.
Arrondi (mathématiques)Arrondir un nombre consiste à le remplacer par un autre nombre considéré comme plus simple ou plus pertinent. Ce procédé s'appelle arrondissage ou arrondissement et le nombre obtenu est un arrondi. Le résultat est moins précis, mais plus facile à employer. Il y a plusieurs façons d'arrondir. En général, on arrondit un nombre en en donnant une valeur approchée obtenue à partir de son développement décimal en réduisant le nombre de chiffres significatifs. L'arrondi peut se faire au plus proche, par excès ou par défaut.
Interpolation bilinéaireL'interpolation bilinéaire est une méthode d'interpolation pour les fonctions de deux variables sur une grille régulière. Elle permet de calculer la valeur d'une fonction en un point quelconque, à partir de ses deux plus proches voisins dans chaque direction. C'est une méthode très utilisée en pour le , qui permet d'obtenir de meilleurs résultats que l'interpolation par plus proche voisin, tout en restant de complexité raisonnable.
Trigonometric interpolationIn mathematics, trigonometric interpolation is interpolation with trigonometric polynomials. Interpolation is the process of finding a function which goes through some given data points. For trigonometric interpolation, this function has to be a trigonometric polynomial, that is, a sum of sines and cosines of given periods. This form is especially suited for interpolation of periodic functions. An important special case is when the given data points are equally spaced, in which case the solution is given by the discrete Fourier transform.