Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Fluide incompressibleUn fluide incompressible est un fluide dont le volume est considéré comme constant quelle que soit la pression qu'il subit, tout fluide étant en réalité sensible à la pression. Par nature, tous les fluides sont compressibles, certains plus que d'autres, et en phase gazeuse considérablement plus qu'en phase liquide. La compressibilité d'un fluide mesure la variation de volume d'une certaine quantité de ce fluide lorsqu'il est soumis à une pression extérieure.
Parametric equationIn mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, called parametric curve and parametric surface, respectively. In such cases, the equations are collectively called a parametric representation, or parametric system, or parameterization (alternatively spelled as parametrisation) of the object.
Forme (géométrie)En géométrie classique, la forme permet d’identifier ou de distinguer des figures selon qu’elles peuvent ou non être obtenues les unes à partir des autres par des transformations géométriques qui préservent les angles en multipliant toutes les longueurs par un même coefficient d’agrandissement. Au sens commun, la forme d’une figure est en général décrite par la donnée combinatoire d’un nombre fini de points et de segments ou d’autres courbes délimitant des surfaces, des comparaisons de longueurs ou d’angles, d’éventuels angles droits et éventuellement du sens de courbure.
Stokes' paradoxIn the science of fluid flow, Stokes' paradox is the phenomenon that there can be no creeping flow of a fluid around a disk in two dimensions; or, equivalently, the fact there is no non-trivial steady-state solution for the Stokes equations around an infinitely long cylinder. This is opposed to the 3-dimensional case, where Stokes' method provides a solution to the problem of flow around a sphere. The velocity vector of the fluid may be written in terms of the stream function as The stream function in a Stokes flow problem, satisfies the biharmonic equation.
Tourbillon de turbulencevignette|upright=0.75|Allées de Karman autour de Madère et des îles Canaries vignette|upright=0.75|Les courants océaniques de Oya shivo et Kuroshio se rencontrent et donnent un tourbillon de turbulence visible par la concentration du phytoplancton dans le vortex. Un tourbillon de turbulence est un élément d'une masse fluide turbulente qui a une certaine individualité et une certaine vie qui lui sont propres. Il peut être causé par un obstacle dans le flot créant un contre-courant, par une différence de densité entre deux sections du fluide ou par la rencontre de deux fluides.
Fluide non newtonienUn fluide non newtonien est un fluide qui ne suit pas la loi de viscosité de Newton, c'est-à-dire une viscosité constante indépendante de la contrainte. Dans les fluides non newtoniens, la viscosité peut changer lorsqu'elle est soumise à une force pour devenir plus liquide ou plus solide. Le ketchup, par exemple, devient plus coulant lorsqu'il est secoué et se comporte donc de manière non newtonienne.
Grandeur sans dimensionUne grandeur sans dimension ou adimensionnelle est une grandeur physique dont la dimension vaut , ce qui revient à dire que tous ses exposants dimensionnels sont nuls : Une grandeur adimensionelle peut être obtenue à partir d'une combinaison de grandeurs dimensionnées, dont l'analyse dimensionnelle permet de vérifier la dimension. Une grandeur adimensionelle peut cependant posséder une unité, comme par exemple les angles dont l'unité est le radian. D'autres exemples de grandeurs adimensionnées sont l'indice de réfraction ou la densité.
Parametrization (geometry)In mathematics, and more specifically in geometry, parametrization (or parameterization; also parameterisation, parametrisation) is the process of finding parametric equations of a curve, a surface, or, more generally, a manifold or a variety, defined by an implicit equation. The inverse process is called implicitization. "To parameterize" by itself means "to express in terms of parameters". Parametrization is a mathematical process consisting of expressing the state of a system, process or model as a function of some independent quantities called parameters.
Méthodes de Runge-KuttaLes méthodes de Runge-Kutta sont des méthodes d'analyse numérique d'approximation de solutions d'équations différentielles. Elles ont été nommées ainsi en l'honneur des mathématiciens Carl Runge et Martin Wilhelm Kutta, lesquels élaborèrent la méthode en 1901. Ces méthodes reposent sur le principe de l'itération, c'est-à-dire qu'une première estimation de la solution est utilisée pour calculer une seconde estimation, plus précise, et ainsi de suite. Considérons le problème suivant : que l'on va chercher à résoudre en un ensemble discret t < t < .