Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The aim of this work is to solve parametrized partial differential equations in computational domains represented by networks of repetitive geometries by combining reduced basis and domain decomposition techniques. The main idea behind this approach is to compute once, locally and for few reference shapes, some representative finite element solutions for different values of the parameters and with a set of different suitable boundary conditions on the boundaries: these "functions will represent the basis of a reduced space where the global solution is sought for. The continuity of the latter is assured by a classical domain decomposition approach. Test results on Poisson problem show the flexibility of the proposed method in which accuracy and computational time may be tuned by varying the number of reduced basis functions employed, or the set of boundary conditions used for defining locally the basis functions. The proposed approach simplifies the pre-computation of the reduced basis space by splitting the global problem into smaller local subproblems. Thanks to this feature, it allows dealing with arbitrarily complex network and features more flexibility than a classical global reduced basis approximation where the topology of the geometry is fixed. (C) 2015 Elsevier Ltd. All rights reserved.
Alfio Quarteroni, Andrea Manzoni
Simone Deparis, Riccardo Tenderini, Nicholas Mueller
Annalisa Buffa, Pablo Antolin Sanchez, Giuliano Guarino