Publication

Neural Joint Space Implicit Signed Distance Functions for Reactive Robot Manipulator Control

Abstract

In this paper, we present an approach for learning a neural implicit signed distance function expressed in joint space coordinates, that efficiently computes distance-to-collisions for arbitrary robotic manipulator configurations. Computing such distances is a long standing problem in robotics as approximate representations of the robot and environment geometry can lead to overly conservative constraints, numerical instabilities and expensive computations -- limiting real-time reactive control and task success. Leveraging GPU parallelization and the differentiable nature of the proposed distance function allows for fast calculation of gradients with respect to the neural network inputs, providing a continuous repulsive vector field directly in joint space. We show that the learned high-resolution collision representation can be used to achieve real-time reactive control by i) formulating it as a collision-avoidance constraint for a quadratic programming (QP) inverse kinematics (IK), and ii) introducing it as a collision cost in a sampling-based joint space model predictive controller (MPC). For a reaching benchmark task with a 7DoF robot and dynamic obstacles intentionally obstructing the robot's path we achieve average 250Hz control frequency with QP-IK and 92Hz with MPC, showing an accelerated performance of 15% for QP-IK and 40% for MPC over baseline distance computation techniques.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.