Concept

Prime k-tuple

Summary
In number theory, a prime k-tuple is a finite collection of values representing a repeatable pattern of differences between prime numbers. For a k-tuple (a, b, ...), the positions where the k-tuple matches a pattern in the prime numbers are given by the set of integers n such that all of the values (n + a, n + b, ...) are prime. Typically the first value in the k-tuple is 0 and the rest are distinct positive even numbers. Several of the shortest k-tuples are known by other common names: OEIS sequence covers 7-tuples (prime septuplets) and contains an overview of related sequences, e.g. the three sequences corresponding to the three admissible 8-tuples (prime octuplets), and the union of all 8-tuples. The first term in these sequences corresponds to the first prime in the smallest prime constellation shown below. In order for a k-tuple to have infinitely many positions at which all of its values are prime, there cannot exist a prime p such that the tuple includes every different possible value modulo p. For, if such a prime p existed, then no matter which value of n was chosen, one of the values formed by adding n to the tuple would be divisible by p, so there could only be finitely many prime placements (only those including p itself). For example, the numbers in a k-tuple cannot take on all three values 0, 1, and 2 modulo 3; otherwise the resulting numbers would always include a multiple of 3 and therefore could not all be prime unless one of the numbers is 3 itself. A k-tuple that satisfies this condition (i.e. it does not have a p for which it covers all the different values modulo p) is called admissible. It is conjectured that every admissible k-tuple matches infinitely many positions in the sequence of prime numbers. However, there is no admissible tuple for which this has been proven except the 1-tuple (0). Nevertheless, by Yitang Zhang's famous proof of 2013 it follows that there exists at least one 2-tuple which matches infinitely many positions; subsequent work showed that some 2-tuple exists with values differing by 246 or less that matches infinitely many positions.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.