In the theory of abelian groups, the torsion subgroup AT of an abelian group A is the subgroup of A consisting of all elements that have finite order (the torsion elements of A). An abelian group A is called a torsion group (or periodic group) if every element of A has finite order and is called torsion-free if every element of A except the identity is of infinite order.
The proof that AT is closed under the group operation relies on the commutativity of the operation (see examples section).
If A is abelian, then the torsion subgroup T is a fully characteristic subgroup of A and the factor group A/T is torsion-free. There is a covariant functor from the to the category of torsion groups that sends every group to its torsion subgroup and every homomorphism to its restriction to the torsion subgroup. There is another covariant functor from the category of abelian groups to the category of torsion-free groups that sends every group to its quotient by its torsion subgroup, and sends every homomorphism to the obvious induced homomorphism (which is easily seen to be well-defined).
If A is finitely generated and abelian, then it can be written as the direct sum of its torsion subgroup T and a torsion-free subgroup (but this is not true for all infinitely generated abelian groups). In any decomposition of A as a direct sum of a torsion subgroup S and a torsion-free subgroup, S must equal T (but the torsion-free subgroup is not uniquely determined). This is a key step in the classification of finitely generated abelian groups.
For any abelian group and any prime number p the set ATp of elements of A that have order a power of p is a subgroup called the p-power torsion subgroup or, more loosely, the p-torsion subgroup:
The torsion subgroup AT is isomorphic to the direct sum of its p-power torsion subgroups over all prime numbers p:
When A is a finite abelian group, ATp coincides with the unique Sylow p-subgroup of A.
Each p-power torsion subgroup of A is a fully characteristic subgroup.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
After introducing the foundations of classical and quantum information theory, and quantum measurement, the course will address the theory and practice of digital quantum computing, covering fundament
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
In mathematics, specifically in ring theory, a torsion element is an element of a module that yields zero when multiplied by some non-zero-divisor of the ring. The torsion submodule of a module is the submodule formed by the torsion elements. A torsion module is a module that equals its torsion submodule. A module is torsion-free if its torsion submodule comprises only the zero element. This terminology is more commonly used for modules over a domain, that is, when the regular elements of the ring are all its nonzero elements.
In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subset such that every element of the group can be uniquely expressed as an integer combination of finitely many basis elements. For instance the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1,0) and (0,1) as its basis.
In mathematics, specifically in abstract algebra, a torsion-free abelian group is an abelian group which has no non-trivial torsion elements; that is, a group in which the group operation is commutative and the identity element is the only element with finite order. While finitely generated abelian groups are completely classified, not much is known about infinitely generated abelian groups, even in the torsion-free countable case. Abelian group An abelian group is said to be torsion-free if no element other than the identity is of finite order.
The Cremona group is the group of birational transformations of the complex projective plane. In this paper we classify its subgroups that consist only of elliptic elements using elementary model theory. This yields in particular a description of the struc ...
Donor-acceptor (D-A) copolymers have shown great potential for intramolecular singlet fission (iSF). Nonetheless, very few design principles exist for optimizing these systems for iSF, with very little knowledge about how to engineer them for this purpose. ...
We examine the moments of the number of lattice points in a fixed ball of volume V for lattices in Euclidean space which are modules over the ring of integers of a number field K. In particular, denoting by ωK the number of roots of unity in K, we ...