In the theory of abelian groups, the torsion subgroup AT of an abelian group A is the subgroup of A consisting of all elements that have finite order (the torsion elements of A). An abelian group A is called a torsion group (or periodic group) if every element of A has finite order and is called torsion-free if every element of A except the identity is of infinite order. The proof that AT is closed under the group operation relies on the commutativity of the operation (see examples section). If A is abelian, then the torsion subgroup T is a fully characteristic subgroup of A and the factor group A/T is torsion-free. There is a covariant functor from the to the category of torsion groups that sends every group to its torsion subgroup and every homomorphism to its restriction to the torsion subgroup. There is another covariant functor from the category of abelian groups to the category of torsion-free groups that sends every group to its quotient by its torsion subgroup, and sends every homomorphism to the obvious induced homomorphism (which is easily seen to be well-defined). If A is finitely generated and abelian, then it can be written as the direct sum of its torsion subgroup T and a torsion-free subgroup (but this is not true for all infinitely generated abelian groups). In any decomposition of A as a direct sum of a torsion subgroup S and a torsion-free subgroup, S must equal T (but the torsion-free subgroup is not uniquely determined). This is a key step in the classification of finitely generated abelian groups. For any abelian group and any prime number p the set ATp of elements of A that have order a power of p is a subgroup called the p-power torsion subgroup or, more loosely, the p-torsion subgroup: The torsion subgroup AT is isomorphic to the direct sum of its p-power torsion subgroups over all prime numbers p: When A is a finite abelian group, ATp coincides with the unique Sylow p-subgroup of A. Each p-power torsion subgroup of A is a fully characteristic subgroup.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
MATH-310: Algebra
This is an introduction to modern algebra: groups, rings and fields.
PHYS-641: Quantum Computing
After introducing the foundations of classical and quantum information theory, and quantum measurement, the course will address the theory and practice of digital quantum computing, covering fundament
MATH-211: Algebra II - groups
This course deals with group theory, with particular emphasis on group actions and notions of category theory.
Show more
Related lectures (34)
The Class Number Formula: Counting and Lipschitz Principle
Covers the Class Number Formula and a counting problem related to the lattice and Lipschitz principle.
Algebra: Practice Exam Solutions
Covers the solution of a practice exam in Algebra, focusing on finding greatest common divisors of polynomials and exploring group properties.
Fundamental Groups
Explores fundamental groups, homotopy classes, and coverings in connected manifolds.
Show more
Related publications (17)

Moments of the number of points in a bounded set for number field lattices

Maryna Viazovska, Nihar Prakash Gargava, Vlad Serban

We examine the moments of the number of lattice points in a fixed ball of volume VV for lattices in Euclidean space which are modules over the ring of integers of a number field KK. In particular, denoting by ωKω_K the number of roots of unity in KK, we ...
arXiv2023
Show more
Related people (2)
Related concepts (16)
Torsion (algebra)
In mathematics, specifically in ring theory, a torsion element is an element of a module that yields zero when multiplied by some non-zero-divisor of the ring. The torsion submodule of a module is the submodule formed by the torsion elements. A torsion module is a module that equals its torsion submodule. A module is torsion-free if its torsion submodule comprises only the zero element. This terminology is more commonly used for modules over a domain, that is, when the regular elements of the ring are all its nonzero elements.
Free abelian group
In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subset such that every element of the group can be uniquely expressed as an integer combination of finitely many basis elements. For instance the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1,0) and (0,1) as its basis.
Torsion-free abelian group
In mathematics, specifically in abstract algebra, a torsion-free abelian group is an abelian group which has no non-trivial torsion elements; that is, a group in which the group operation is commutative and the identity element is the only element with finite order. While finitely generated abelian groups are completely classified, not much is known about infinitely generated abelian groups, even in the torsion-free countable case. Abelian group An abelian group is said to be torsion-free if no element other than the identity is of finite order.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.