Robot localization denotes the robot's ability to establish its own position and orientation within the frame of reference. Path planning is effectively an extension of localisation, in that it requires the determination of the robot's current position and a position of a goal location, both within the same frame of reference or coordinates. Map building can be in the shape of a metric map or any notation describing locations in the robot frame of reference.
For any mobile device, the ability to navigate in its environment is important. Avoiding dangerous situations such as collisions and unsafe conditions (temperature, radiation, exposure to weather, etc.) comes first, but if the robot has a purpose that relates to specific places in the robot environment, it must find those places.
This article will present an overview of the skill of navigation and try to identify the basic blocks of a robot navigation system, types of navigation systems, and closer look at its related building components.
Robot navigation means the robot's ability to determine its own position in its frame of reference and then to plan a path towards some goal location. In order to navigate in its environment, the robot or any other mobility device requires representation, i.e. a map of the environment and the ability to interpret that representation.
Navigation can be defined as the combination of the three fundamental competences:
Self-localisation
Path planning
Map-building and map interpretation
Some robot navigation systems use simultaneous localization and mapping to generate 3D reconstructions of their surroundings.
Vision-based navigation or optical navigation uses computer vision algorithms and optical sensors, including laser-based range finder and photometric cameras using CCD arrays, to extract the visual features required to the localization in the surrounding environment. However, there are a range of techniques for navigation and localization using vision information, the main components of each technique are:
representations of the environment.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course provides an introduction to the design, control, and applications of aerial robots. Students will be able to translate theoretical concepts into practice by means of hands-on exercises with
The objective of this course is to expose students to the fundamentals of robotics at small scale. This includes a focus on physical laws that predominate at the nano and microscale, technologies for
The goal of this lab series is to practice the various theoretical frameworks acquired in the courses on a variety of robots, ranging from industrial robots to autonomous mobile robots, to robotic dev
Robotic mapping is a discipline related to computer vision and cartography. The goal for an autonomous robot is to be able to construct (or use) a map (outdoor use) or floor plan (indoor use) and to localize itself and its recharging bases or beacons in it. Robotic mapping is that branch which deals with the study and application of ability to localize itself in a map / plan and sometimes to construct the map or floor plan by the autonomous robot. Evolutionarily shaped blind action may suffice to keep some animals alive.
A mobile robot is an automatic machine that is capable of locomotion. Mobile robotics is usually considered to be a subfield of robotics and information engineering. Mobile robots have the capability to move around in their environment and are not fixed to one physical location. Mobile robots can be "autonomous" (AMR - autonomous mobile robot) which means they are capable of navigating an uncontrolled environment without the need for physical or electro-mechanical guidance devices.
An autonomous robot is a robot that acts without recourse to human control. The first autonomous robots environment were known as Elmer and Elsie, which were constructed in the late 1940s by W. Grey Walter. They were the first robots in history that were programmed to "think" the way biological brains do and meant to have free will. Elmer and Elsie were often labeled as tortoises because of how they were shaped and the manner in which they moved. They were capable of phototaxis which is the movement that occurs in response to light stimulus.
Autonomous navigation of small UAVs is typically based on the integration of inertial navigation systems (INS) together with global navigation satellite systems (GNSS). However, GNSS signals can face various forms of interference affecting their continuous ...
EPFL2024
,
Navigation of drones is predominantly based on sensor fusion algorithms. Most of these algorithms make use of some form of Bayesian filtering with a majority employing an Extended Kalman Filter (EKF), wherein inertial measurements are fused with a Global N ...
Given the patchy nature of gas plumes and the slow response of conventional gas sensors, the use of mobile robots for Gas Source Localization (GSL) tasks presents significant challenges. These aspects increase the difficulties in obtaining gas measurement ...