Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Booth's multiplication algorithm is a multiplication algorithm that multiplies two signed binary numbers in two's complement notation. The algorithm was invented by Andrew Donald Booth in 1950 while doing research on crystallography at Birkbeck College in Bloomsbury, London. Booth's algorithm is of interest in the study of computer architecture. Booth's algorithm examines adjacent pairs of bits of the 'N'-bit multiplier Y in signed two's complement representation, including an implicit bit below the least significant bit, y−1 = 0. For each bit yi, for i running from 0 to N − 1, the bits yi and yi−1 are considered. Where these two bits are equal, the product accumulator P is left unchanged. Where yi = 0 and yi−1 = 1, the multiplicand times 2i is added to P; and where yi = 1 and yi−1 = 0, the multiplicand times 2i is subtracted from P. The final value of P is the signed product. The representations of the multiplicand and product are not specified; typically, these are both also in two's complement representation, like the multiplier, but any number system that supports addition and subtraction will work as well. As stated here, the order of the steps is not determined. Typically, it proceeds from LSB to MSB, starting at i = 0; the multiplication by 2i is then typically replaced by incremental shifting of the P accumulator to the right between steps; low bits can be shifted out, and subsequent additions and subtractions can then be done just on the highest N bits of P. There are many variations and optimizations on these details. The algorithm is often described as converting strings of 1s in the multiplier to a high-order +1 and a low-order −1 at the ends of the string. When a string runs through the MSB, there is no high-order +1, and the net effect is interpretation as a negative of the appropriate value. Booth's algorithm can be implemented by repeatedly adding (with ordinary unsigned binary addition) one of two predetermined values A and S to a product P, then performing a rightward arithmetic shift on P.
Giovanni De Micheli, Mathias Soeken, Eleonora Testa, Odysseas Zografos
Giovanni De Micheli, Mathias Soeken, Eleonora Testa, Odysseas Zografos