Summary
In mathematics, a structure is a set endowed with some additional features on the set (e.g. an operation, relation, metric, or topology). Often, the additional features are attached or related to the set, so as to provide it with some additional meaning or significance. A partial list of possible structures are measures, algebraic structures (groups, fields, etc.), topologies, metric structures (geometries), orders, events, equivalence relations, differential structures, and . Sometimes, a set is endowed with more than one feature simultaneously, which allows mathematicians to study the interaction between the different structures more richly. For example, an ordering imposes a rigid form, shape, or topology on the set, and if a set has both a topology feature and a group feature, such that these two features are related in a certain way, then the structure becomes a topological group. Mappings between sets which preserve structures (i.e., structures in the domain are mapped to equivalent structures in the codomain) are of special interest in many fields of mathematics. Examples are homomorphisms, which preserve algebraic structures; homeomorphisms, which preserve topological structures; and diffeomorphisms, which preserve differential structures. In 1939, the French group with the pseudonym Nicolas Bourbaki saw structures as the root of mathematics. They first mentioned them in their "Fascicule" of Theory of Sets and expanded it into Chapter IV of the 1957 edition. They identified three mother structures: algebraic, topological, and order. The set of real numbers has several standard structures: An order: each number is either less or more than any other number. Algebraic structure: there are operations of multiplication and addition that make it into a field. A measure: intervals of the real line have a specific length, which can be extended to the Lebesgue measure on many of its subsets. A metric: there is a notion of distance between points. A geometry: it is equipped with a metric and is flat.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (25)
CIVIL-449: Nonlinear analysis of structures
This course provides an introduction to the nonlinear modelling of civil engineering structures.
ME-104: Introduction to structural mechanics
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
CH-221: Chemistry of elements s and p
Introduction to the chemistry of the s & p elements of the periodic table.
Show more
Related publications (71)