In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs.
In formal terms, a directed graph is an ordered pair where
V is a set whose elements are called vertices, nodes, or points;
A is a set of ordered pairs of vertices, called arcs, directed edges (sometimes simply edges with the corresponding set named E instead of A), arrows, or directed lines.
It differs from an ordinary or undirected graph, in that the latter is defined in terms of unordered pairs of vertices, which are usually called edges, links or lines.
The aforementioned definition does not allow a directed graph to have multiple arrows with the same source and target nodes, but some authors consider a broader definition that allows directed graphs to have such multiple arcs (namely, they allow the arc set to be a multiset). Sometimes these entities are called directed multigraphs (or multidigraphs).
On the other hand, the aforementioned definition allows a directed graph to have loops (that is, arcs that directly connect nodes with themselves), but some authors consider a narrower definition that does not allow directed graphs to have loops.
Directed graphs without loops may be called simple directed graphs, while directed graphs with loops may be called loop-digraphs (see section Types of directed graph).
Graph (discrete mathematics)#Types of graphs
Symmetric directed graphs are directed graphs where all edges appear twice, one in each direction (that is, for every arrow that belongs to the digraph, the corresponding inverse arrow also belongs to it). (Such an edge is sometimes called "bidirected" and such graphs are sometimes called "bidirected", but this conflicts with the meaning for bidirected graphs.)
Simple directed graphs are directed graphs that have no loops (arrows that directly connect vertices to themselves) and no multiple arrows with same source and target nodes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
This course covers the statistical physics approach to computer science problems ranging from graph theory and constraint satisfaction to inference and machine learning. In particular the replica and
In graph theory, an arborescence is a directed graph in which, for a vertex u (called the root) and any other vertex v, there is exactly one directed path from u to v. An arborescence is thus the directed-graph form of a rooted tree, understood here as an undirected graph. Equivalently, an arborescence is a directed, rooted tree in which all edges point away from the root; a number of other equivalent characterizations exist. Every arborescence is a directed acyclic graph (DAG), but not every DAG is an arborescence.
In graph theory, a loop (also called a self-loop or a buckle) is an edge that connects a vertex to itself. A simple graph contains no loops. Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing multiple edges between the same vertices): Where graphs are defined so as to allow loops and multiple edges, a graph without loops or multiple edges is often distinguished from other graphs by calling it a simple graph.
In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more isolated subgraphs. It is closely related to the theory of network flow problems. The connectivity of a graph is an important measure of its resilience as a network. In an undirected graph G, two vertices u and v are called connected if G contains a path from u to v.
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
We examine the connection of two graph parameters, the size of a minimum feedback arcs set and the acyclic disconnection. A feedback arc set of a directed graph is a subset of arcs such that after deletion the graph becomes acyclic. The acyclic disconnecti ...
Elsevier2024
This article focuses on spectral methods for recovering communities in temporal networks. In the case of fixed communities, spectral clustering on the simple time-aggregated graph (i.e., the weighted graph formed by the sum of the interactions over all tem ...
Ieee Computer Soc2024
Orthogonal group synchronization is the problem of estimating n elements Z(1),& mldr;,Z(n) from the rxr orthogonal group given some relative measurements R-ij approximate to Z(i)Z(j)(-1). The least-squares formulation is nonconvex. To avoid its local minim ...