Pell's equation, also called the Pell–Fermat equation, is any Diophantine equation of the form where n is a given positive nonsquare integer, and integer solutions are sought for x and y. In Cartesian coordinates, the equation is represented by a hyperbola; solutions occur wherever the curve passes through a point whose x and y coordinates are both integers, such as the trivial solution with x = 1 and y = 0. Joseph Louis Lagrange proved that, as long as n is not a perfect square, Pell's equation has infinitely many distinct integer solutions. These solutions may be used to accurately approximate the square root of n by rational numbers of the form x/y.
This equation was first studied extensively in India starting with Brahmagupta, who found an integer solution to in his Brāhmasphuṭasiddhānta circa 628. Bhaskara II in the 12th century and Narayana Pandit in the 14th century both found general solutions to Pell's equation and other quadratic indeterminate equations. Bhaskara II is generally credited with developing the chakravala method, building on the work of Jayadeva and Brahmagupta. Solutions to specific examples of Pell's equation, such as the Pell numbers arising from the equation with n = 2, had been known for much longer, since the time of Pythagoras in Greece and a similar date in India. William Brouncker was the first European to solve Pell's equation. The name of Pell's equation arose from Leonhard Euler mistakenly attributing Brouncker's solution of the equation to John Pell.
As early as 400 BC in India and Greece, mathematicians studied the numbers arising from the n = 2 case of Pell's equation,
and from the closely related equation
because of the connection of these equations to the square root of 2. Indeed, if x and y are positive integers satisfying this equation, then x/y is an approximation of . The numbers x and y appearing in these approximations, called side and diameter numbers, were known to the Pythagoreans, and Proclus observed that in the opposite direction these numbers obeyed one of these two equations.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The main theme in Diopahntine approximation is to approximate a real number by a rational number with a certain denominator bound. The course covers the case of one real number, that is classical and
Présentation des méthodes de la mécanique analytique (équations de Lagrange et de Hamilton) et introduction aux notions de modes normaux et de stabilité.
In mathematics, a square root of a number x is a number y such that ; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. For example, 4 and −4 are square roots of 16 because . Every nonnegative real number x has a unique nonnegative square root, called the principal square root, which is denoted by where the symbol "" is called the radical sign or radix. For example, to express the fact that the principal square root of 9 is 3, we write .
In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form x2 + bx + c = 0 with b and c (usual) integers. When algebraic integers are considered, the usual integers are often called rational integers. Common examples of quadratic integers are the square roots of rational integers, such as , and the complex number i = , which generates the Gaussian integers.
Brahmagupta (598 – 668 CE) was an Indian mathematician and astronomer. He is the author of two early works on mathematics and astronomy: the Brāhmasphuṭasiddhānta (BSS, "correctly established doctrine of Brahma", dated 628), a theoretical treatise, and the Khaṇḍakhādyaka ("edible bite", dated 665), a more practical text. In 628 CE, Brahmagupta first described gravity as an attractive force, and used the term "gurutvākarṣaṇam (गुरुत्वाकर्षणम्)" in Sanskrit to describe it. Brahmagupta, according to his own statement, was born in 598 CE.
Introduces complex numbers and their forms, including Cartesian, polar, and exponential forms, and explains how to find the argument of a complex number.
Synthesis from examples enables non-expert users to generate programs by specifying examples of their behavior. A domain-specific form of such synthesis has been recently deployed in a widely used spreadsheet software product. In this paper we contribute t ...
This thesis is devoted to the derivation of a posteriori error estimates for the numerical approximation of fluids flows separated by a free surface. Based on these estimates, error indicators are introduced and adaptive algorithms are proposed to solve th ...