Summary
In mathematics, the adjoint representation (or adjoint action) of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if G is , the Lie group of real n-by-n invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible n-by-n matrix to an endomorphism of the vector space of all linear transformations of defined by: . For any Lie group, this natural representation is obtained by linearizing (i.e. taking the differential of) the action of G on itself by conjugation. The adjoint representation can be defined for linear algebraic groups over arbitrary fields. Representation theory and Lie group#The Lie algebra associated with a Lie group Let G be a Lie group, and let be the mapping g ↦ Ψg, with Aut(G) the automorphism group of G and Ψg: G → G given by the inner automorphism (conjugation) This Ψ is a Lie group homomorphism. For each g in G, define Adg to be the derivative of Ψg at the origin: where d is the differential and is the tangent space at the origin e (e being the identity element of the group G). Since is a Lie group automorphism, Adg is a Lie algebra automorphism; i.e., an invertible linear transformation of to itself that preserves the Lie bracket. Moreover, since is a group homomorphism, too is a group homomorphism. Hence, the map is a group representation called the adjoint representation of G. If G is an immersed Lie subgroup of the general linear group (called immersely linear Lie group), then the Lie algebra consists of matrices and the exponential map is the matrix exponential for matrices X with small operator norms. Thus, for g in G and small X in , taking the derivative of at t = 0, one gets: where on the right we have the products of matrices. If is a closed subgroup (that is, G is a matrix Lie group), then this formula is valid for all g in G and all X in . Succinctly, an adjoint representation is an isotropy representation associated to the conjugation action of G around the identity element of G.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (6)
ME-428: Data-driven design & fabrication methods
There is an increasing need for data-driven methods for automated design and fabrication of complex mechanical systems. This course covers methods for encoding the design space, optimization and sear
MATH-334: Representation theory
Study the basics of representation theory of groups and associative algebras.
PHYS-431: Quantum field theory I
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
Show more
Related lectures (34)
Modeling Introduction
Explores the importance of modeling to understand and control complex systems efficiently.
Harmonic Stability Analysis
Explores stability analysis of the 1st harmonic in closed-loop systems and the importance of harmonic conditions for limit cycles.
Difference Equations and Controllers
Covers linear difference equations, controllers, discretization, and approximation techniques.
Show more
Related publications (52)