The terms glycans and polysaccharides are defined by IUPAC as synonyms meaning "compounds consisting of a large number of monosaccharides linked glycosidically".cite book | title=IUPAC Gold Book - Glycans | chapter-url= doi=10.1351/goldbook.G02645| chapter=Glycans| year=2009| isbn=978-0-9678550-9-7 However, in practice the term glycan may also be used to refer to the carbohydrate portion of a glycoconjugate, such as a glycoprotein, glycolipid, or a proteoglycan, even if the carbohydrate is only an oligosaccharide. Glycans usually consist solely of O-glycosidic linkages of monosaccharides. For example, cellulose is a glycan (or, to be more specific, a glucan) composed of β-1,4-linked D-glucose, and chitin is a glycan composed of β-1,4-linked N-acetyl-D-glucosamine. Glycans can be homo- or heteropolymers of monosaccharide residues, and can be linear or branched.
Glycan-protein interactions
Glycans can be found attached to proteins as in glycoproteins and proteoglycans. In general, they are found on the exterior surface of cells. O- and N-linked glycans are very common in eukaryotes but may also be found, although less commonly, in prokaryotes.
N-linked glycosylation
N-Linked glycans are attached in the endoplasmic reticulum to the nitrogen (N) in the side chain of asparagine (Asn) in the sequon. The sequon is an Asn-X-Ser or Asn-X-Thr sequence, where X is any amino acid except proline and the glycan may be composed of N-acetylgalactosamine, galactose, neuraminic acid, N-acetylglucosamine, fucose, mannose, and other monosaccharides.
In eukaryotes, N-linked glycans are derived from a core 14-sugar unit assembled in the cytoplasm and endoplasmic reticulum. First, two N-acetylglucosamine residues are attached to dolichol monophosphate, a lipid, on the external side of the endoplasmic reticulum membrane. Five mannose residues are then added to this structure. At this point, the partially finished core glycan is flipped across the endoplasmic reticulum membrane, so that it is now located within the reticular lumen.