In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.
For example, in an oriented 3-dimensional Euclidean space, an oriented plane can be represented by the exterior product of two basis vectors, and its Hodge dual is the normal vector given by their cross product; conversely, any vector is dual to the oriented plane perpendicular to it, endowed with a suitable bivector. Generalizing this to an n-dimensional vector space, the Hodge star is a one-to-one mapping of k-vectors to (n – k)-vectors; the dimensions of these spaces are the binomial coefficients .
The naturalness of the star operator means it can play a role in differential geometry, when applied to the cotangent bundle of a pseudo-Riemannian manifold, and hence to differential k-forms. This allows the definition of the codifferential as the Hodge adjoint of the exterior derivative, leading to the Laplace–de Rham operator. This generalizes the case of 3-dimensional Euclidean space, in which divergence of a vector field may be realized as the codifferential opposite to the gradient operator, and the Laplace operator on a function is the divergence of its gradient. An important application is the Hodge decomposition of differential forms on a closed Riemannian manifold.
Let V be an n-dimensional oriented vector space with a nondegenerate symmetric bilinear form , referred to here as an inner product. This induces an inner product on k-vectors , for , by defining it on decomposable k-vectors and to equal the Gram determinant
extended to through linearity.
The unit n-vector is defined in terms of an oriented orthonormal basis of V as:
(Note: In the general pseudoRiemannian case, orthonormality means:
)
The Hodge star operator is a linear operator on the exterior algebra of V, mapping k-vectors to (n – k)-vectors, for .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The subject deals with differential geometry and its relation to global analysis, partial differential equations, geometric measure theory and variational principles to name a few.
In this reading group, we will work together through recent important papers in applied topology.
Participants will take turns presenting articles, then leading a discussion of the contents.
The goal of this course is to help students learn the basic theory of complex manifolds and Hodge theory.
In mathematics, a bivector or 2-vector is a quantity in exterior algebra or geometric algebra that extends the idea of scalars and vectors. If a scalar is considered a degree-zero quantity, and a vector is a degree-one quantity, then a bivector can be thought of as being of degree two. Bivectors have applications in many areas of mathematics and physics. They are related to complex numbers in two dimensions and to both pseudovectors and quaternions in three dimensions.
In mathematics, the exterior algebra, or Grassmann algebra, named after Hermann Grassmann, is an algebra that uses the exterior product or wedge product as its multiplication. In mathematics, the exterior product or wedge product of vectors is an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogues. The exterior product of two vectors and , denoted by is called a bivector and lives in a space called the exterior square, a vector space that is distinct from the original space of vectors.
In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapted to computation and the concrete representation of cohomology classes. It is a cohomology theory based on the existence of differential forms with prescribed properties. On any smooth manifold, every exact form is closed, but the converse may fail to hold.
In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...
We study applications of spectral positivity and the averaged null energy condition (ANEC) to renormalization group (RG) flows in two-dimensional quantum field theory. We find a succinct new proof of the Zamolodchikov c-theorem, and derive further independ ...
In this thesis, we propose to formally derive amplitude equations governing the weakly nonlinear evolution of non-normal dynamical systems, when they respond to harmonic or stochastic forcing, or to an initial condition. This approach reconciles the non-mo ...