In mathematics, a group extension is a general means of describing a group in terms of a particular normal subgroup and quotient group. If and are two groups, then is an extension of by if there is a short exact sequence
If is an extension of by , then is a group, is a normal subgroup of and the quotient group is isomorphic to the group . Group extensions arise in the context of the extension problem, where the groups and are known and the properties of are to be determined. Note that the phrasing " is an extension of by " is also used by some.
Since any finite group possesses a maximal normal subgroup with simple factor group , all finite groups may be constructed as a series of extensions with finite simple groups. This fact was a motivation for completing the classification of finite simple groups.
An extension is called a central extension if the subgroup lies in the center of .
One extension, the direct product, is immediately obvious. If one requires and to be abelian groups, then the set of isomorphism classes of extensions of by a given (abelian) group is in fact a group, which is isomorphic to
cf. the Ext functor. Several other general classes of extensions are known but no theory exists that treats all the possible extensions at one time. Group extension is usually described as a hard problem; it is termed the extension problem.
To consider some examples, if , then is an extension of both and . More generally, if is a semidirect product of and , written as , then is an extension of by , so such products as the wreath product provide further examples of extensions.
The question of what groups are extensions of by is called the extension problem, and has been studied heavily since the late nineteenth century. As to its motivation, consider that the composition series of a finite group is a finite sequence of subgroups , where each is an extension of by some simple group. The classification of finite simple groups gives us a complete list of finite simple groups; so the solution to the extension problem would give us enough information to construct and classify all finite groups in general.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
The seminar aims at discussing recent research papers in the field of deep learning,
implementing the transferability/adaptability of the proposed approaches to applications in the field of research
Explores the classification of extensions in group theory, emphasizing split extensions and semi-direct products.
Explores cohomology and the cross product, demonstrating its application in group actions like conjugation.
Explores the extension of the weak law of large numbers using St. Petersburg's paradox as an example.
In mathematics, the special linear group SL(n, F) of degree n over a field F is the set of n × n matrices with determinant 1, with the group operations of ordinary matrix multiplication and matrix inversion. This is the normal subgroup of the general linear group given by the kernel of the determinant where F× is the multiplicative group of F (that is, F excluding 0). These elements are "special" in that they form an algebraic subvariety of the general linear group – they satisfy a polynomial equation (since the determinant is polynomial in the entries).
In mathematics, specifically in group theory, the direct product is an operation that takes two groups G and H and constructs a new group, usually denoted G × H. This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics. In the context of abelian groups, the direct product is sometimes referred to as the direct sum, and is denoted .
In mathematics, a covering group of a topological group H is a covering space G of H such that G is a topological group and the covering map p : G → H is a continuous group homomorphism. The map p is called the covering homomorphism. A frequently occurring case is a double covering group, a topological double cover in which H has index 2 in G; examples include the spin groups, pin groups, and metaplectic groups.
Scattering wave systems that are periodically modulated in time offer many new degrees of freedom to control waves in both the spatial and frequency domains. Such systems, albeit linear, do not conserve frequency and require the adaptation of the usual the ...
Upper-limb occupational exoskeletons to support the workers' upper arms are typically designed to provide antigravitational support. Although typical work activities require workers to perform static and dynamic actions, the majority of the studies in lite ...
Capture calculus is an extension of System Fsub that tracks free variables of terms in their type, allowing one to represent capabilities while limiting their scope. While previous calculi had mechanized soundness proofs, the latest version, namely the box ...