Concept

Vector-valued differential form

In mathematics, a vector-valued differential form on a manifold M is a differential form on M with values in a vector space V. More generally, it is a differential form with values in some vector bundle E over M. Ordinary differential forms can be viewed as R-valued differential forms. An important case of vector-valued differential forms are Lie algebra-valued forms. (A connection form is an example of such a form.) Let M be a smooth manifold and E → M be a smooth vector bundle over M. We denote the space of smooth sections of a bundle E by Γ(E). An E-valued differential form of degree p is a smooth section of the tensor product bundle of E with Λp(T ∗M), the p-th exterior power of the cotangent bundle of M. The space of such forms is denoted by Because Γ is a strong monoidal functor, this can also be interpreted as where the latter two tensor products are the tensor product of modules over the ring Ω0(M) of smooth R-valued functions on M (see the seventh example here). By convention, an E-valued 0-form is just a section of the bundle E. That is, Equivalently, an E-valued differential form can be defined as a bundle morphism which is totally skew-symmetric. Let V be a fixed vector space. A V-valued differential form of degree p is a differential form of degree p with values in the trivial bundle M × V. The space of such forms is denoted Ωp(M, V). When V = R one recovers the definition of an ordinary differential form. If V is finite-dimensional, then one can show that the natural homomorphism where the first tensor product is of vector spaces over R, is an isomorphism. One can define the pullback of vector-valued forms by smooth maps just as for ordinary forms. The pullback of an E-valued form on N by a smooth map φ : M → N is an (φE)-valued form on M, where φE is the pullback bundle of E by φ. The formula is given just as in the ordinary case. For any E-valued p-form ω on N the pullback φ*ω is given by Just as for ordinary differential forms, one can define a wedge product of vector-valued forms.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.