Concepts associés (13)
Exterior covariant derivative
In the mathematical field of differential geometry, the exterior covariant derivative is an extension of the notion of exterior derivative to the setting of a differentiable principal bundle or vector bundle with a connection. Let G be a Lie group and P → M be a principal G-bundle on a smooth manifold M. Suppose there is a connection on P; this yields a natural direct sum decomposition of each tangent space into the horizontal and vertical subspaces. Let be the projection to the horizontal subspace.
Solder form
In mathematics, more precisely in differential geometry, a soldering (or sometimes solder form) of a fiber bundle to a smooth manifold is a manner of attaching the fibers to the manifold in such a way that they can be regarded as tangent. Intuitively, soldering expresses in abstract terms the idea that a manifold may have a point of contact with a certain model Klein geometry at each point. In extrinsic differential geometry, the soldering is simply expressed by the tangency of the model space to the manifold.
Forme de connexion
En géométrie différentielle, une 1-forme de connexion est une forme différentielle sur un -fibré principal qui vérifie certains axiomes. La donnée d'une forme de connexion permet de parler, entre autres, de courbure, de torsion, de dérivée covariante, de relevé horizontal, de transport parallèle, d'holonomie et de théorie de jauge. La notion de forme de connexion est intimement reliée à la notion de connexion d'Ehresmann. Soient : un groupe de Lie ; l'élément identité de ; l'algèbre de Lie de ; la représentation adjointe de sur ; une variété différentielle ; un -fibré principal sur .
Connection (principal bundle)
In mathematics, and especially differential geometry and gauge theory, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. A principal G-connection on a principal G-bundle P over a smooth manifold M is a particular type of connection which is compatible with the action of the group G. A principal connection can be viewed as a special case of the notion of an Ehresmann connection, and is sometimes called a principal Ehresmann connection.
Tenseur de torsion
En géométrie différentielle, la torsion constitue, avec la courbure, une mesure de la façon dont une base mobile évolue le long des courbes, et le tenseur de torsion en donne l'expression générale dans le cadre des variétés, c'est-à-dire des « espaces courbes » de toutes dimensions. La torsion se manifeste en géométrie différentielle classique comme une valeur numérique associée à chaque point d'une courbe de l'espace euclidien.
2-forme de courbure
La 2-forme de courbure est une forme différentielle induite par une forme de connexion sur un fibré principal dans le domaine de la géométrie différentielle. Soient : un groupe de Lie ; l'algèbre de Lie de ; une variété différentielle ; un -fibré principal sur ; la représentation adjointe de sur son algèbre de Lie ; le fibré adjoint de sur ; le produit extérieur sur les -formes différentielles réelles sur ; le crochet de Lie sur l'algèbre de Lie ; le produit wedge-crochet sur les -formes différentielles à valeurs en sur , défini par les combinaisons linéaires de : une 1-forme de connexion sur .
Gauge theory (mathematics)
In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.
Connexion de Koszul
En géométrie différentielle, une connexion (de Koszul) est un opérateur sur les sections d'un fibré vectoriel. Cette notion a été introduite par Jean-Louis Koszul en 1950 et formalise le transport parallèle de vecteurs le long d'une courbe en termes d'équation différentielle ordinaire. Les connexions sont des objets localement définis auxquels sont associées les notions de courbure et de torsion. L'un des exemples les plus simples de connexions de Koszul sans torsion est la connexion de Levi-Civita naturellement définie sur le fibré tangent de toute variété riemannienne.
Fibré des repères
En géométrie différentielle, un fibré des repères est un certain type de fibré principal qui correspond à un fibré vectoriel sur une variété différentielle. Les points du fibré des repères sont les repères linéaires des fibres du fibré vectoriel correspondant. L'exemple le plus commun de fibré des repères est le fibré des repères tangents correspondant au fibré tangent d'une variété différentielle.
Dérivée covariante
En géométrie différentielle, la dérivée covariante est un outil destiné à définir la dérivée d'un champ de vecteurs sur une variété. Dans le cas où la dérivée covariante existe, il n'existe pas de différence entre la dérivée covariante et la connexion, à part la manière dont elles sont introduites. (Cela est faux quand la dérivée covariante n'existe pas en revanche ).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.