In computing, signed number representations are required to encode negative numbers in binary number systems. In mathematics, negative numbers in any base are represented by prefixing them with a minus sign ("−"). However, in RAM or CPU registers, numbers are represented only as sequences of bits, without extra symbols. The four best-known methods of extending the binary numeral system to represent signed numbers are: sign–magnitude, ones' complement, two's complement, and offset binary. Some of the alternative methods use implicit instead of explicit signs, such as negative binary, using the base −2. Corresponding methods can be devised for other bases, whether positive, negative, fractional, or other elaborations on such themes. There is no definitive criterion by which any of the representations is universally superior. For integers, the representation used in most current computing devices is two's complement, although the Unisys ClearPath Dorado series mainframes use ones' complement. The early days of digital computing were marked by competing ideas about both hardware technology and mathematics technology (numbering systems). One of the great debates was the format of negative numbers, with some of the era's top experts expressing very strong and differing opinions. One camp supported two's complement, the system that is dominant today. Another camp supported ones' complement, where a negative value is formed by inverting all of the bits in its positive equivalent. A third group supported sign–magnitude, where a value is changed from positive to negative simply by toggling the word's highest-order bit. There were arguments for and against each of the systems. Sign–magnitude allowed for easier tracing of memory dumps (a common process in the 1960s) as small numeric values use fewer 1 bits. These systems did ones' complement math internally, so numbers would have to be converted to ones' complement values when they were transmitted from a register to the math unit and then converted back to sign–magnitude when the result was transmitted back to the register.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (9)
CS-173: Fundamentals of digital systems
Welcome to the introductory course in digital design and computer architecture. In this course, we will embark on a journey into the world of digital systems, exploring the fundamental principles and
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
BIO-504: Lab immersion academic (outside EPFL)
Engaging in a hands-on wetlab and/ or computational project in life sciences engineering, students develop skills in experimentation and data analysis.
Afficher plus
Publications associées (30)
Concepts associés (17)
Single-precision floating-point format
Single-precision floating-point format (sometimes called FP32 or float32) is a computer number format, usually occupying 32 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point. A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 231 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2−23) × 2127 ≈ 3.
Offset binary
Offset binary, also referred to as excess-K, excess-N, excess-e, excess code or biased representation, is a method for signed number representation where a signed number n is represented by the bit pattern corresponding to the unsigned number n+K, K being the biasing value or offset. There is no standard for offset binary, but most often the K for an n-bit binary word is K = 2n−1 (for example, the offset for a four-digit binary number would be 23=8).
Signe (arithmétique)
vignette|Les symboles plus et moins sont utilisés pour indiquer le signe d'un nombre En arithmétique, le signe d'un nombre réel qualifie sa position par rapport à zéro. Un nombre est dit positif s'il est supérieur ou égal à zéro ; il est dit négatif s'il est inférieur ou égal à zéro. Le nombre zéro lui-même est donc à la fois positif et négatif. Le signe arithmétique est souvent noté à l'aide des signes algébriques « + » et « − » (plus et moins), notamment dans un tableau de signe.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.