A liposome is a small artificial vesicle, spherical in shape, having at least one lipid bilayer. Due to their hydrophobicity and/or hydrophilicity, biocompatibility, particle size and many other properties, liposomes can be used as drug delivery vehicles for administration of pharmaceutical drugs and nutrients, such as lipid nanoparticles in mRNA vaccines, and DNA vaccines. Liposomes can be prepared by disrupting biological membranes (such as by sonication).
Liposomes are most often composed of phospholipids, especially phosphatidylcholine, and cholesterol, but may also include other lipids, such as those found in egg and phosphatidylethanolamine, as long as they are compatible with lipid bilayer structure. A liposome design may employ surface ligands for attaching to unhealthy tissue.
The major types of liposomes are the multilamellar vesicle (MLV, with several lamellar phase lipid bilayers), the small unilamellar liposome vesicle (SUV, with one lipid bilayer), the large unilamellar vesicle (LUV), and the cochleate vesicle. A less desirable form are multivesicular liposomes in which one vesicle contains one or more smaller vesicles.
Liposomes should not be confused with lysosomes, or with micelles and reverse micelles composed of monolayers.
The word liposome derives from two Greek words: lipo ("fat") and soma ("body"); it is so named because its composition is primarily of phospholipid.
Liposomes were first described by British haematologist Alec Douglas Bangham in 1961 (published 1964), at the Babraham Institute, in Cambridge. They were discovered when Bangham and R. W. Horne were testing the institute's new electron microscope by adding negative stain to dry phospholipids. The resemblance to the plasmalemma was obvious, and the microscope pictures served as the first evidence for the cell membrane being a bilayer lipid structure. Their integrity as a closed, bilayer structure, that could release its contents after detergent treatment (structure-linked latency) was established by Bangham, Standish and Weissmann in the next year.