Summary
A motor controller is a device or group of devices that can coordinate in a predetermined manner the performance of an electric motor. A motor controller might include a manual or automatic means for starting and stopping the motor, selecting forward or reverse rotation, selecting and regulating the speed, regulating or limiting the torque, and protecting against overloads and electrical faults. Motor controllers may use electromechanical switching, or may use power electronics devices to regulate the speed and direction of a motor. Motor controllers are used with both direct current and alternating current motors. A controller includes means to connect the motor to the electrical power supply, and may also include overload protection for the motor, and over-current protection for the motor and wiring. A motor controller may also supervise the motor's field circuit, or detect conditions such as low supply voltage, incorrect polarity or incorrect phase sequence, or high motor temperature. Some motor controllers limit the inrush starting current, allowing the motor to accelerate itself and connected mechanical load more slowly than a direct connection. Motor controllers may be manual, requiring an operator to sequence a starting switch through steps to accelerate the load, or may be fully automatic, using internal timers or current sensors to accelerate the motor. Some types of motor controllers also allow adjustment of the speed of the electric motor. For direct-current motors, the controller may adjust the voltage applied to the motor, or adjust the current flowing in the motor's field winding. Alternating current motors may have little or no speed response to adjusting terminal voltage, so controllers for alternating current instead adjust rotor circuit resistance (for wound rotor motors) or change the frequency of the AC applied to the motor for speed control using power electronic devices or electromechanical frequency changers. The physical design and packaging of motor controllers is about as varied as that of electric motors themselves.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (20)
ME-303: Microinformatique (pour GM)
Comprendre les microcontrôleurs et apprendre à les mettre en oeuvre, en particulier pour la commande de systèmes mécaniques.
BIO-482: Neuroscience: cellular and circuit mechanisms
This course focuses on the biophysical mechanisms of mammalian brain function. We will describe how neurons communicate through synaptic transmission in order to process sensory information ultimately
NX-414: Brain-like computation and intelligence
Recent advances in machine learning have contributed to the emergence of powerful models for how humans and other animals reason and behave. In this course we will compare and contrast how such brain
Show more