Concept

Transformation infinitésimale

In mathematics, an infinitesimal transformation is a limiting form of small transformation. For example one may talk about an infinitesimal rotation of a rigid body, in three-dimensional space. This is conventionally represented by a 3×3 skew-symmetric matrix A. It is not the matrix of an actual rotation in space; but for small real values of a parameter ε the transformation is a small rotation, up to quantities of order ε2. A comprehensive theory of infinitesimal transformations was first given by Sophus Lie. This was at the heart of his work, on what are now called Lie groups and their accompanying Lie algebras; and the identification of their role in geometry and especially the theory of differential equations. The properties of an abstract Lie algebra are exactly those definitive of infinitesimal transformations, just as the axioms of group theory embody symmetry. The term "Lie algebra" was introduced in 1934 by Hermann Weyl, for what had until then been known as the algebra of infinitesimal transformations of a Lie group. For example, in the case of infinitesimal rotations, the Lie algebra structure is that provided by the cross product, once a skew-symmetric matrix has been identified with a 3-vector. This amounts to choosing an axis vector for the rotations; the defining Jacobi identity is a well-known property of cross products. The earliest example of an infinitesimal transformation that may have been recognised as such was in Euler's theorem on homogeneous functions. Here it is stated that a function F of n variables x1, ..., xn that is homogeneous of degree r, satisfies with the Theta operator. That is, from the property it is possible to differentiate with respect to λ and then set λ equal to 1. This then becomes a necessary condition on a smooth function F to have the homogeneity property; it is also sufficient (by using Schwartz distributions one can reduce the mathematical analysis considerations here).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
ME-331: Solid mechanics
Model the behavior of elastic, viscoelastic, and inelastic solids both in the infinitesimal and finite-deformation regimes.
Publications associées (6)

Reactions of pyrrole, imidazole, and pyrazole with ozone: kinetics and mechanisms

Urs von Gunten, Peter Rudolf Tentscher, Sung Eun Lim

Five-membered nitrogen-containing heterocyclic compounds (azoles) belong to potential moieties in complex structures where transformations during ozonation can occur. This study focused on the azole-ozone chemistry of pyrrole, imidazole, and pyrazole as mo ...
ROYAL SOC CHEMISTRY2020

Reactions of nitrogen-containing compounds with ozone: kinetics and mechanisms

Sung Eun Lim

Nitrogen-containing moieties are widespread in natural waters in dissolved organic nitrogen and micropollu-tants. They are often susceptible to an electrophilic attack of ozone because of the electron-rich nature of the neutral form of nitrogen in organic ...
EPFL2020
Afficher plus
Concepts associés (5)
Équation différentielle ordinaire
En mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Théorème de Noether (physique)
Le théorème de Noether exprime l'équivalence qui existe entre les lois de conservation et l'invariance du lagrangien d'un système par certaines transformations (appelées symétries) des coordonnées. Démontré en 1915 et publié en 1918 par la mathématicienne Emmy Noether à Göttingen, ce théorème fut qualifié par Albert Einstein de « monument de la pensée mathématique » dans une lettre envoyée à David Hilbert en vue de soutenir la carrière de la mathématicienne.
Groupe de Lie
En mathématiques, un groupe de Lie est un groupe qui est aussi une variété différentielle. D'une part, un groupe est une structure algébrique munie d'une opération binaire, typiquement une multiplication et son inverse la division, ou alors une addition et son inverse la soustraction. D'autre part, une variété est un espace qui localement ressemble à un espace euclidien. Ici, on s'intéresse à un ensemble qui est à la fois un groupe et une variété : nous pouvons multiplier les éléments entre eux, calculer l'inverse d'un élément.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.