Summary
In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents. Diophantine problems have fewer equations than unknowns and involve finding integers that solve simultaneously all equations. As such systems of equations define algebraic curves, algebraic surfaces, or, more generally, algebraic sets, their study is a part of algebraic geometry that is called Diophantine geometry. The word Diophantine refers to the Hellenistic mathematician of the 3rd century, Diophantus of Alexandria, who made a study of such equations and was one of the first mathematicians to introduce symbolism into algebra. The mathematical study of Diophantine problems that Diophantus initiated is now called Diophantine analysis. While individual equations present a kind of puzzle and have been considered throughout history, the formulation of general theories of Diophantine equations (beyond the case of linear and quadratic equations) was an achievement of the twentieth century. In the following Diophantine equations, w, x, y, and z are the unknowns and the other letters are given constants: The simplest linear Diophantine equation takes the form where a, b and c are given integers. The solutions are described by the following theorem: This Diophantine equation has a solution (where x and y are integers) if and only if c is a multiple of the greatest common divisor of a and b. Moreover, if (x, y) is a solution, then the other solutions have the form (x + kv, y − ku), where k is an arbitrary integer, and u and v are the quotients of a and b (respectively) by the greatest common divisor of a and b. Proof: If d is this greatest common divisor, Bézout's identity asserts the existence of integers e and f such that ae + bf = d.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.