Surface (mathematics)In mathematics, a surface is a mathematical model of the common concept of a surface. It is a generalization of a plane, but, unlike a plane, it may be curved; this is analogous to a curve generalizing a straight line. There are several more precise definitions, depending on the context and the mathematical tools that are used for the study. The simplest mathematical surfaces are planes and spheres in the Euclidean 3-space. The exact definition of a surface may depend on the context.
Glossary of arithmetic and diophantine geometryThis is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality. Diophantine geometry in general is the study of algebraic varieties V over fields K that are finitely generated over their prime fields—including as of special interest number fields and finite fields—and over local fields.
Michael AtiyahSir Michael Francis Atiyah (əˈtiːə; 22 April 1929 – 11 January 2019) was a British-Lebanese mathematician specialising in geometry. His contributions include the Atiyah–Singer index theorem and co-founding topological K-theory. He was awarded the Fields Medal in 1966 and the Abel Prize in 2004. Atiyah was born on 22 April 1929 in Hampstead, London, England, the son of Jean (née Levens) and Edward Atiyah. His mother was Scottish and his father was a Lebanese Orthodox Christian.
Pontryagin classIn mathematics, the Pontryagin classes, named after Lev Pontryagin, are certain characteristic classes of real vector bundles. The Pontryagin classes lie in cohomology groups with degrees a multiple of four. Given a real vector bundle E over M, its k-th Pontryagin class is defined as where: denotes the -th Chern class of the complexification of E, is the -cohomology group of M with integer coefficients. The rational Pontryagin class is defined to be the image of in , the -cohomology group of M with rational coefficients.
Abelian categoryIn mathematics, an abelian category is a in which morphisms and can be added and in which s and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the , Ab. The theory originated in an effort to unify several cohomology theories by Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are very stable categories; for example they are and they satisfy the snake lemma.
Hilbert spaceIn mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.
Poincaré dualityIn mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology and cohomology groups of manifolds. It states that if M is an n-dimensional oriented closed manifold (compact and without boundary), then the kth cohomology group of M is isomorphic to the ()th homology group of M, for all integers k Poincaré duality holds for any coefficient ring, so long as one has taken an orientation with respect to that coefficient ring; in particular, since every manifold has a unique orientation mod 2, Poincaré duality holds mod 2 without any assumption of orientation.
Kodaira embedding theoremIn mathematics, the Kodaira embedding theorem characterises non-singular projective varieties, over the complex numbers, amongst compact Kähler manifolds. In effect it says precisely which complex manifolds are defined by homogeneous polynomials. Kunihiko Kodaira's result is that for a compact Kähler manifold M, with a Hodge metric, meaning that the cohomology class in degree 2 defined by the Kähler form ω is an integral cohomology class, there is a complex-analytic embedding of M into complex projective space of some high enough dimension N.
Geometric invariant theoryIn mathematics, geometric invariant theory (or GIT) is a method for constructing quotients by group actions in algebraic geometry, used to construct moduli spaces. It was developed by David Mumford in 1965, using ideas from the paper in classical invariant theory. Geometric invariant theory studies an action of a group G on an algebraic variety (or scheme) X and provides techniques for forming the 'quotient' of X by G as a scheme with reasonable properties.
Shing-Tung YauShing-Tung Yau (jaʊ; ; born April 4, 1949) is a Chinese-American mathematician and the William Caspar Graustein Professor of Mathematics at Harvard University. In April 2022, Yau announced retirement from Harvard to become Chair Professor of mathematics at Tsinghua University. Yau was born in Shantou, China, moved to Hong Kong at a young age, and to the United States in 1969. He was awarded the Fields Medal in 1982, in recognition of his contributions to partial differential equations, the Calabi conjecture, the positive energy theorem, and the Monge–Ampère equation.