Power ruleIn calculus, the power rule is used to differentiate functions of the form , whenever is a real number. Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule. The power rule underlies the Taylor series as it relates a power series with a function's derivatives. Let be a function satisfying for all , where . Then, The power rule for integration states that for any real number . It can be derived by inverting the power rule for differentiation.
Constant of integrationIn calculus, the constant of integration, often denoted by (or ), is a constant term added to an antiderivative of a function to indicate that the indefinite integral of (i.e., the set of all antiderivatives of ), on a connected domain, is only defined up to an additive constant. This constant expresses an ambiguity inherent in the construction of antiderivatives. More specifically, if a function is defined on an interval, and is an antiderivative of then the set of all antiderivatives of is given by the functions where is an arbitrary constant (meaning that any value of would make a valid antiderivative).
Formule de Stirlingvignette La formule de Stirling, du nom du mathématicien écossais James Stirling, donne un équivalent de la factorielle d'un entier naturel n quand n tend vers l'infini : que l'on trouve souvent écrite ainsi : où le nombre e désigne la base de l'exponentielle. C'est Abraham de Moivre qui a initialement démontré la formule suivante : où C est une constante réelle (non nulle). L'apport de Stirling fut d'attribuer la valeur C = à la constante et de donner un développement de ln(n!) à tout ordre.
Théorème de RolleEn mathématiques, et plus précisément en analyse, le théorème de Rolle (souvent mentionné sous le nom de lemme de Rolle), en référence à Michel Rolle, est un résultat fondamental concernant la dérivée d'une fonction réelle d'une variable réelle. Il énonce que si une fonction dérivable prend la même valeur en deux points, alors sa dérivée s'annule au moins une fois entre ces deux points.
Mathematical problemA mathematical problem is a problem that can be represented, analyzed, and possibly solved, with the methods of mathematics. This can be a real-world problem, such as computing the orbits of the planets in the solar system, or a problem of a more abstract nature, such as Hilbert's problems. It can also be a problem referring to the nature of mathematics itself, such as Russell's Paradox. Informal "real-world" mathematical problems are questions related to a concrete setting, such as "Adam has five apples and gives John three.
Limite de BanachEn mathématiques, une limite de Banach, du nom de Stefan Banach, est une forme linéaire continue sur l'espace de Banach l des suites bornées de nombres complexes, telle que pour toute suite dans , on ait : si pour tout , alors (positivité) ; où est l'opérateur de décalage défini par (invariance par décalage) ; si est une suite convergente, alors . Ainsi, est un prolongement de la forme linéaire continue où est le sous-espace fermé des suites convergentes au sens usuel.
RadianLe radian (symbole : rad) est l'unité d'angle (plan ou dièdre) du Système international. Par définition, un angle ayant son sommet au centre d'un cercle a une mesure d'un radian s'il intercepte, sur la circonférence de ce cercle, un arc d'une longueur égale à celle du rayon du cercle. Bien que le mot « radian » ait été inventé au cours des années 1870 par Thomas Muir et James Thomson, les mathématiciens mesuraient depuis longtemps les angles en prenant pour unité le rapport entre la circonférence et la longueur du rayon.
Semi-differentiabilityIn calculus, a branch of mathematics, the notions of one-sided differentiability and semi-differentiability of a real-valued function f of a real variable are weaker than differentiability. Specifically, the function f is said to be right differentiable at a point a if, roughly speaking, a derivative can be defined as the function's argument x moves to a from the right, and left differentiable at a if the derivative can be defined as x moves to a from the left.
Approximant de PadéEn mathématiques, et plus précisément en analyse complexe, l'approximant de Padé est une méthode d'approximation d'une fonction analytique par une fonction rationnelle. En ce sens, elle est un peu analogue à un développement limité qui approche la fonction selon les mêmes critères à l'aide d'un polynôme. De même que les développements limités forment une suite appelée série entière, convergeant vers la fonction initiale, les approximants de Padé apparaissent comme les réduites de diverses fractions continues (généralisées) dont la limite est aussi la fonction initiale.
VolumeLe volume, en sciences physiques ou mathématiques, est une grandeur qui mesure l'extension d'un objet ou d'une partie de l'espace. En physique : le volume d'un objet ou d'une figure géométrique tridimensionnelle et fermée mesure l'extension dans l'espace physique qu'il ou elle possède dans les trois directions en même temps, de même que l'aire d'une figure dans le plan mesure l'extension qu'elle possède dans les deux directions en même temps ; par extension, on étend la notion de volume à des espaces abstraits, dont les coordonnées peuvent avoir une ou des dimensions autres que celle d'une longueur.