Category

Dynamics

Summary
Dynamics is the branch of classical mechanics that is concerned with the study of forces and their effects on motion. Isaac Newton was the first to formulate the fundamental physical laws that govern dynamics in classical non-relativistic physics, especially his second law of motion. Generally speaking, researchers involved in dynamics study how a physical system might develop or alter over time and study the causes of those changes. In addition, Newton established the fundamental physical laws which govern dynamics in physics. By studying his system of mechanics, dynamics can be understood. In particular, dynamics is mostly related to Newton's second law of motion. However, all three laws of motion are taken into account because these are interrelated in any given observation or experiment. The study of dynamics falls under two categories: linear and rotational. Linear dynamics pertains to objects moving in a line and involves such quantities as force, mass/inertia, displacement (in units of distance), velocity (distance per unit time), acceleration (distance per unit of time squared) and momentum (mass times unit of velocity). Rotational dynamics pertains to objects that are rotating or moving in a curved path and involves such quantities as torque, moment of inertia/rotational inertia, angular displacement (in radians or less often, degrees), angular velocity (radians per unit time), angular acceleration (radians per unit of time squared) and angular momentum (moment of inertia times unit of angular velocity). Very often, objects exhibit linear and rotational motion. For classical electromagnetism, Maxwell's equations describe the kinematics. The dynamics of classical systems involving both mechanics and electromagnetism are described by the combination of Newton's laws, Maxwell's equations, and the Lorentz force. Force From Newton, force can be defined as an exertion or pressure which can cause an object to accelerate. The concept of force is used to describe an influence which causes a free body (object) to accelerate.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.