In electronic engineering, a through-silicon via (TSV) or through-chip via is a vertical electrical connection (via) that passes completely through a silicon wafer or die. TSVs are high-performance interconnect techniques used as an alternative to wire-bond and flip chips to create 3D packages and 3D integrated circuits. Compared to alternatives such as package-on-package, the interconnect and device density is substantially higher, and the length of the connections becomes shorter.
Dictated by the manufacturing process, there exist three different types of TSVs: via-first TSVs are fabricated before the individual component (transistors, capacitors, resistors, etc.) are patterned (front end of line, FEOL), via-middle TSVs are fabricated after the individual component are patterned but before the metal layers (back-end-of-line, BEOL), and via-last TSVs are fabricated after (or during) the BEOL process. Via-middle TSVs are currently a popular option for advanced 3D ICs as well as for interposer stacks.
TSVs through the front end of line (FEOL) have to be carefully accounted for during the EDA and manufacturing phases. That is because TSVs induce thermo-mechanical stress in the FEOL layer, thereby impacting the transistor behaviour.
s (CIS) were among the first applications to adopt TSV(s) in volume manufacturing. In initial CIS applications, TSVs were formed on the backside of the wafer to form interconnects, eliminate wire bonds, and allow for reduced form factor and higher-density interconnects. Chip stacking came about only with the advent of backside illuminated (BSI) CIS, and involved reversing the order of the lens, circuitry, and photodiode from traditional front-side illumination so that the light coming through the lens first hits the photodiode and then the circuitry. This was accomplished by flipping the photodiode wafer, thinning the backside, and then bonding it on top of the readout layer using a direct oxide bond, with TSVs as interconnects around the perimeter.
A 3D package (System in Package, Chip Stack MCM, etc.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
:
Related courses (4)
In depth analysis of the operation principles and technology of advanced micro- and nanosystems. Familiarisation to their implementation into products and their applications.
This lecture provides insights in the design and technologies of Internet-of-Things sensor nodes, with focus on low power technologies. The lectures alternate every two weeks between sensing technolog
Multiprocessors are now the defacto building blocks for all computer systems. This course will build upon the basic concepts offered in Computer Architecture I to cover the architecture and organizati
Explores the landscape of big data, memory importance in online services, challenges faced by memory systems, emerging DRAM technologies, and storage-class memory.
A three-dimensional integrated circuit (3D IC) is a MOS (metal-oxide semiconductor) integrated circuit (IC) manufactured by stacking as many as 16 or more ICs and interconnecting them vertically using, for instance, through-silicon vias (TSVs) or Cu-Cu connections, so that they behave as a single device to achieve performance improvements at reduced power and smaller footprint than conventional two dimensional processes. The 3D IC is one of several 3D integration schemes that exploit the z-direction to achieve electrical performance benefits in microelectronics and nanoelectronics.
Random-access memory (RAM; ræm) is a form of computer memory that can be read and changed in any order, typically used to store working data and machine code. A random-access memory device allows data items to be read or written in almost the same amount of time irrespective of the physical location of data inside the memory, in contrast with other direct-access data storage media (such as hard disks, CD-RWs, DVD-RWs and the older magnetic tapes and drum memory), where the time required to read and write data items varies significantly depending on their physical locations on the recording medium, due to mechanical limitations such as media rotation speeds and arm movement.
A system in a package (SiP) or system-in-package is a number of integrated circuits (ICs) enclosed in one chip carrier package or encompassing an IC package substrate that may include passive components and perform the functions of an entire system. The ICs may be stacked using package on package, placed side by side, and/or embedded in the substrate. The SiP performs all or most of the functions of an electronic system, and is typically used when designing components for mobile phones, digital music players, etc.
Addressing the environmental impact of electronic waste in biomedical sensing, an eco-conscious approach to the realization of a Chitosan-based Acetone sensor tag for wireless gas monitoring is presented. The fabrication involves inkjet printing of silver ...
Monolithic pixel sensors integrate the sensor matrix and readout in the same silicon die, and therefore present several advantages over the more largely used hybrid detectors in high-energy physics. They offer an easier detector assembly, lower cost, lower ...
Embedded memories occupy an increasingly dominant part of the area and power budgets of modern systems-on-chips (SoCs). Multi-ported embedded memories, commonly used by media SoCs and graphical processing units, occupy even more area and consume higher pow ...