In semiconductor design, standard-cell methodology is a method of designing application-specific integrated circuits (ASICs) with mostly digital-logic features. Standard-cell methodology is an example of design abstraction, whereby a low-level very-large-scale integration (VLSI) layout is encapsulated into an abstract logic representation (such as a NAND gate).
Cell-based methodology – the general class to which standard cells belong – makes it possible for one designer to focus on the high-level (logical function) aspect of digital design, while another designer focuses on the implementation (physical) aspect. Along with semiconductor manufacturing advances, standard-cell methodology has helped designers scale ASICs from comparatively simple single-function ICs (of several thousand gates), to complex multi-million gate system-on-a-chip (SoC) devices.
A standard cell is a group of transistor and interconnect structures that provides a boolean logic function (e.g., AND, OR, XOR, XNOR, inverters) or a storage function (flipflop or latch). The simplest cells are direct representations of the elemental NAND, NOR, and XOR boolean function, although cells of much greater complexity are commonly used (such as a 2-bit full-adder, or muxed D-input flipflop.) The cell's boolean logic function is called its logical view: functional behavior is captured in the form of a truth table or Boolean algebra equation (for combinational logic), or a state transition table (for sequential logic).
Usually, the initial design of a standard cell is developed at the transistor level, in the form of a transistor netlist or schematic view. The netlist is a nodal description of transistors, of their connections to each other, and of their terminals (ports) to the external environment. A schematic view may be generated with a number of different Computer Aided Design (CAD) or Electronic Design Automation (EDA) programs that provide a Graphical User Interface (GUI) for this netlist generation process.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Integrated circuit design, or IC design, is a sub-field of electronics engineering, encompassing the particular logic and circuit design techniques required to design integrated circuits, or ICs. ICs consist of miniaturized electronic components built into an electrical network on a monolithic semiconductor substrate by photolithography. IC design can be divided into the broad categories of digital and analog IC design. Digital IC design is to produce components such as microprocessors, FPGAs, memories (RAM, ROM, and flash) and digital ASICs.
An application-specific integrated circuit (ASIC ˈeɪsɪk) is an integrated circuit (IC) chip customized for a particular use, rather than intended for general-purpose use, such as a chip designed to run in a digital voice recorder or a high-efficiency video codec. Application-specific standard product chips are intermediate between ASICs and industry standard integrated circuits like the 7400 series or the 4000 series. ASIC chips are typically fabricated using metal–oxide–semiconductor (MOS) technology, as MOS integrated circuit chips.
In integrated circuit design, integrated circuit (IC) layout, also known IC mask layout or mask design, is the representation of an integrated circuit in terms of planar geometric shapes which correspond to the patterns of metal, oxide, or semiconductor layers that make up the components of the integrated circuit. Originally the overall process was called tapeout, as historically early ICs used graphical black crepe tape on mylar media for photo imaging (erroneously believed to reference magnetic data—the photo process greatly predated magnetic media).
The goal of this lab is to get a working knowledge on the use of industrial state-of-the-art EDA (Electronic Design Automation) tools and design kits for the design of analog and digital integrated ci
The course introduces the fundamentals of digital integrated circuits and the technology aspects from a designers perspective. It focuses mostly on transistor level, but discusses also the extension t
Test of VLSI Systems covers theoretical knowledge related to the major algorithms used in VLSI test, and design for test techniques. Basic knowledge related to computer-aided design for test technique
Verification and testing of hardware heavily relies on cycle-accurate simulation of RTL.As single-processor performance is growing only slowly, conventional, single-threaded RTL simulation is becoming impractical for increasingly complex chip designs and s ...
Electroreduction of carbon dioxide (CO2) in a flow electrolyzer represents a promising carbon-neutral technology with efficient production of valuable chemicals. In this work, the catalytic performance of polycrystalline copper (Cu), Cu2O-derived copper (O ...
With Moore's law coming to an end, increasingly more hope is being put in specialized hardware implemented on reconfigurable architectures such as Field-Programmable Gate Arrays (FPGAs). Yet, it is often neglected that these architectures themselves experi ...