Concept# Atomic absorption spectroscopy

Summary

Atomic absorption spectroscopy (AAS) and atomic emission spectroscopy (AES) is a spectroanalytical procedure for the quantitative determination of chemical elements by free atoms in the gaseous state. Atomic absorption spectroscopy is based on absorption of light by free metallic ions.
In analytical chemistry the technique is used for determining the concentration of a particular element (the analyte) in a sample to be analyzed. AAS can be used to determine over 70 different elements in solution, or directly in solid samples via electrothermal vaporization, and is used in pharmacology, biophysics,
archaeology and toxicology research.
Atomic emission spectroscopy was first used as an analytical technique, and the underlying principles were established in the second half of the 19th century by Robert Wilhelm Bunsen and Gustav Robert Kirchhoff, both professors at the University of Heidelberg, Germany.
The modern form of AAS was largely developed during the 1950s by a team of Austra

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (100)

Loading

Loading

Loading

Related people (26)

Related units (18)

Related concepts (5)

Spectroscopy

Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavele

Atomic emission spectroscopy

Atomic emission spectroscopy (AES) is a method of chemical analysis that uses the intensity of light emitted from a flame, plasma, arc, or spark at a particular wavelength to determine the quantity o

Inductively coupled plasma atomic emission spectroscopy

Inductively coupled plasma atomic emission spectroscopy (ICP-AES), also referred to as inductively coupled plasma optical emission spectroscopy (ICP-OES), is an analytical technique used for the dete

Related courses

Loading

Related lectures

Loading

Related courses (25)

The aim of this course is to treat three of the major techniques for structural characterization of molecules: mass spectrometry, NMR, and X-ray techniques.

Ce cours d'introduction à la microscopie a pour but de donner un apperçu des différentes techniques d'analyse de la microstructure et de la composition des matériaux, en particulier celles liées aux microscopies électronique et optique. Le cours comprend des cours ainsi que des démonstrations.

Introduction and application of photon based tools for chemical sciences: from basic concepts to optical and x-ray lasers

Solar energy has seen tremendous advances in the past years. For thin film photovoltaics, which use less of the expensive semiconductor materials, insufficient light absorption can be a limiting factor. It is hoped that by using diffractive optics to improve the light absorption, the cost per Watt could sink. Correspondingly, the optics of such structures need to compensate for the low absorption by high (structural) resonance, which is challenging to calculate. To estimate optimal structures, a numerical method should be able to assess feasible structures with widely varying geometries quickly. Modal methods allow for an efficient analysis of structures with varying height through the separation of eigenvalue and boundary value problem. First, the thesis aspires to further develop the modal methods for the calculation of optical properties of layered structures containing weakly absorbing metals and semiconductors. Second, the thesis aims to calculate absorption enhancements in idealized, prototypical structures by applying the newly developed methods. The calculations should only depend on material parameters and not contain additional assumptions. These absorption enhancements are not tied to a priori assumptions such as mode couplings, but they solely follow the physics of the structure investigated. The first part of the thesis is concerned with the methodical improvements. A first emphasis is put on studying peculiar properties of the eigenvalue problem, and on new developments of methods to solve it within a layer. Furthermore, it shows several variants for the numerical implementation of the eigenvalue problem. This part includes a new method to calculate the eigenvalues that can be adapted to two dimensional grating problems of arbitrary shape. The new method integrates the eigenvalue problem by making use of a two point trapezoidal formula, and satisfies the boundary condition between different materials exactly. It is energy conserving and the rate of convergence depends on the approximation order. The eigenvalues show a monotonic convergence that allows for extrapolation. The second methodical emphasis is placed on variants of the implementation of the boundary value problem that connects the grating to the incoming and outgoing plane waves. This algorithm describes the propagation of the incident energy to the semiconductor layer and the substrate by solving a non-recursive and numerically stable system of linear equations. A novel variant reduces the bandwidth of the corresponding matrix by a third. The third part of the thesis concerns calculations using the improved methods. First, the improved calculations are verified by showing that the energy conservation of the modal method, as well as the well-behavedness of the condition number of the calculation. Next, numerical results for the new methods are compared to results from the literature for analytic modal methods, and a comparison with existing software is made. Thereafter, the interface plasmons occuring for H polarization are investigated. In the last part of the thesis, calculations are made for the material specific absorption of light in metallic gratings covered by semiconductors, with a special interest in the absorption in the semiconductor. Here, the spectra for rectangular, sinusoidal gratings, and asymmetric gratings are calculated, and the absorption improvement is investigated through an analysis of the involved modes.

Andre Al Haddad, Christoph Bostedt, Jonas Knurr, Siqi Li

The recent demonstration of isolated attosecond pulses from an X-ray free-electron laser (XFEL) opens the possibility for probing ultrafast electron dynamics at X-ray wavelengths. An established experimental method for probing ultrafast dynamics is X-ray transient absorption spectroscopy, where the X-ray absorption spectrum is measured by scanning the central photon energy and recording the resultant photoproducts. The spectral bandwidth inherent to attosecond pulses is wide compared to the resonant features typically probed, which generally precludes the application of this technique in the attosecond regime. In this paper we propose and demonstrate a new technique to conduct transient absorption spectroscopy with broad bandwidth attosecond pulses with the aid of ghost imaging, recovering sub-bandwidth resolution in photoproduct-based absorption measurements.

Related lectures (39)