A back-illuminated sensor, also known as backside illumination (BI) sensor, is a type of digital that uses a novel arrangement of the imaging elements to increase the amount of light captured and thereby improve low-light performance.
The technique was used for some time in specialized roles like low-light security cameras and astronomy sensors, but was complex to build and required further refinement to become widely used. Sony was the first to reduce these problems and their costs sufficiently to introduce a 5-megapixel 1.75 μm BI CMOS sensor at general consumer prices in 2009. BI sensors from OmniVision Technologies have since been used in consumer electronics from other manufacturers as in the HTC EVO 4G Android smartphone, and as a major selling point for the camera in Apple's iPhone 4.
A traditional, front-illuminated digital camera is constructed in a fashion similar to the human eye, with a lens at the front and photodetectors at the back. This traditional orientation of the sensor places the active matrix of the digital camera —a matrix of individual picture elements—on its front surface and simplifies manufacturing. The matrix and its wiring, however, block some of the light, and thus the photocathode layer can only receive the remainder of the incoming light; the blockages reduces the signal that is available to be captured.
A back-illuminated sensor contains the same elements, but arranges the wiring behind the photocathode layer by flipping the silicon wafer during manufacturing and then thinning its reverse side so that light can strike the photocathode layer without passing through the wiring layer. This change can improve the chance of an input photon being captured from about 60% to over 90%, (i.e. a 1/2 stop faster) with the greatest difference realised when pixel size is small, as the light capture area gained in moving the wiring from the top (light incident) to bottom surface (paraphrasing the BSI design) is proportionately larger for a smaller pixel.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
An active-pixel sensor (APS) is an , which was invented by Peter J.W. Noble in 1968, where each pixel sensor unit cell has a photodetector (typically a pinned photodiode) and one or more active transistors. In a metal–oxide–semiconductor (MOS) active-pixel sensor, MOS field-effect transistors (MOSFETs) are used as amplifiers. There are different types of APS, including the early NMOS APS and the now much more common complementary MOS (CMOS) APS, also known as the CMOS sensor.
A camera phone is a mobile phone which is able to capture photographs and often record video using one or more built-in digital cameras. It can also send the resulting image wirelessly and conveniently. The first commercial phone with color camera was the Kyocera Visual Phone VP-210, released in Japan in May 1999. Most camera phones are smaller and simpler than the separate digital cameras. In the smartphone era, the steady sales increase of camera phones caused point-and-shoot camera sales to peak about 2010 and decline thereafter.
An image sensor or imager is a sensor that detects and conveys information used to form an . It does so by converting the variable attenuation of light waves (as they pass through or reflect off objects) into signals, small bursts of current that convey the information. The waves can be light or other electromagnetic radiation. Image sensors are used in electronic imaging devices of both analog and digital types, which include digital cameras, camera modules, camera phones, optical mouse devices, medical imaging equipment, night vision equipment such as thermal imaging devices, radar, sonar, and others.
Explores CMOS circuits for DNA detection, focusing on charge-based capacitance measurement methods and amperometric detection.
Covers the large signal analysis of an OTA Folded Cascode circuit.
Explores the components and operation of Transmission Electron Microscopy, covering vacuum systems, electron emission, lens aberrations, and detector types.
The different receptors in human skin show not only diversity in the stimuli to which they respond, but also variable sensitivity and directionality. This is often determined by their location or morphology, and can play an important role in filtering or a ...
A range of behavioral and contextual factors, including eating and drinking behavior, mood, social context, and other daily activities, can significantly impact an individual's quality of life and overall well-being. Therefore, inferring everyday life aspe ...
Addressing the environmental impact of electronic waste in biomedical sensing, an eco-conscious approach to the realization of a Chitosan-based Acetone sensor tag for wireless gas monitoring is presented. The fabrication involves inkjet printing of silver ...