Summary
Mesenchymal stem cells (MSCs) also known as mesenchymal stromal cells or medicinal signaling cells are multipotent stromal cells that can differentiate into a variety of cell types, including osteoblasts (bone cells), chondrocytes (cartilage cells), myocytes (muscle cells) and adipocytes (fat cells which give rise to marrow adipose tissue). While the terms mesenchymal stem cell (MSC) and marrow stromal cell have been used interchangeably for many years, neither term is sufficiently descriptive: Mesenchyme is embryonic connective tissue that is derived from the mesoderm and that differentiates into hematopoietic and connective tissue, whereas MSCs do not differentiate into hematopoietic cells. Stromal cells are connective tissue cells that form the supportive structure in which the functional cells of the tissue reside. While this is an accurate description for one function of MSCs, the term fails to convey the relatively recently discovered roles of MSCs in the repair of tissue. The term encompasses multipotent cells derived from other non-marrow tissues, such as placenta, umbilical cord blood, adipose tissue, adult muscle, corneal stroma, or the dental pulp of deciduous (baby) teeth. The cells do not have the capacity to reconstitute an entire organ. Mesenchymal stem cells (MSCs), a term first coined by Arnold I. Caplan in 1991, are characterized morphologically by a small cell body with a few cell processes that are long and thin. The cell body contains a large, round nucleus with a prominent nucleolus, which is surrounded by finely dispersed chromatin particles, giving the nucleus a clear appearance. The remainder of the cell body contains a small amount of Golgi apparatus, rough endoplasmic reticulum, mitochondria, and polyribosomes. The cells, which are long and thin, are widely dispersed, and the adjacent extracellular matrix is populated by a few reticular fibrils, but is devoid of the other types of collagen fibrils. These distinctive morphological features of mesenchymal stem cells can be visualized label-free using live cell imaging.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (72)
Low-dose STEM Imaging of Beam-Sensitive Materials
Explores low-dose STEM imaging challenges and techniques for beam-sensitive materials, emphasizing ptychography and pixelated detectors.
Airway Tissue Engineering: Anatomy, Physiology, and Future Developments
Explores airway anatomy, clinical conditions, ideal replacements, available options, and future developments in tissue engineering.
Hematopoietic Stem Cells: Clinical Applications & Assays
Explores the clinical relevance of hematopoietic stem cells, including transplantation procedures, assays, and clinical applications.
Show more