A visual field test is an eye examination that can detect dysfunction in central and peripheral vision which may be caused by various medical conditions such as glaucoma, stroke, pituitary disease, brain tumours or other neurological deficits. Visual field testing can be performed clinically by keeping the subject's gaze fixed while presenting objects at various places within their visual field. Simple manual equipment can be used such as in the tangent screen test or the Amsler grid. When dedicated machinery is used it is called a perimeter.
The exam may be performed by a technician in one of several ways. The test may be performed by a technician directly, with the assistance of a machine, or completely by an automated machine. Machine-based tests aid diagnostics by allowing a detailed printout of the patient's visual field.
Other names for this test may include perimetry, Tangent screen exam, Automated perimetry exam or Goldmann visual field exam.
Techniques used to perform this test include the confrontation visual field examination (Donders' test). The examiner will ask the patient to cover one eye and stare at the examiner. Ideally, when the patient covers their right eye, the examiner covers their left eye and vice versa. The examiner will then move his hand out of the patient's visual field and then bring it back in. Commonly the examiner will use a slowly wagging finger or a hat pin for this. The patient signals the examiner when his hand comes back into view. This is frequently done by an examiner as a simple and preliminary test.
Perimetry or campimetry is one way to systematically test the visual field. It is the systematic measurement of differential light sensitivity in the visual field by the detection of the presence of test targets on a defined background. Perimetry more carefully maps and quantifies the visual field, especially at the extreme periphery of the visual field. The name comes from the method of testing the perimeter of the visual field.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The visual field is "that portion of space in which objects are visible at the same moment during steady fixation of the gaze in one direction"; in ophthalmology and neurology the emphasis is on the structure inside the visual field and it is then considered “the field of functional capacity obtained and recorded by means of perimetry”. However, the visual field can also be understood as a predominantly perceptual concept and its definition then becomes that of the "spatial array of visual sensations available to observation in introspectionist psychological experiments" (for example in van Doorn et al.
A scotoma is an area of partial alteration in the field of vision consisting of a partially diminished or entirely degenerated visual acuity that is surrounded by a field of normal – or relatively well-preserved – vision. Every normal mammalian eye has a scotoma in its field of vision, usually termed its blind spot. This is a location with no photoreceptor cells, where the retinal ganglion cell axons that compose the optic nerve exit the retina. This location is called the optic disc.
Peripheral vision, or indirect vision, is vision as it occurs outside the point of fixation, i.e. away from the center of gaze or, when viewed at large angles, in (or out of) the "corner of one's eye". The vast majority of the area in the visual field is included in the notion of peripheral vision. "Far peripheral" vision refers to the area at the edges of the visual field, "mid-peripheral" vision refers to medium eccentricities, and "near-peripheral", sometimes referred to as "para-central" vision, exists adjacent to the center of gaze.
Neuroengineering is at the frontier between neuroscience and engineering: understanding how the brain works allows developing engineering applications and therapies of high impact, while the design of
Using batteries of visual tests, most studies have found that there are only weak correlations between the performance levels of the tests. Factor analysis has confirmed these results. This means that a participant excelling in one test may rank low in ano ...
2024
Using batteries of visual tests, most studies have found that there are only weak correlations between performance levels of tests in healthy young adults. Factor analysis has confirmed these results. This means that a participant excelling in one test may ...
In the last few years, stroke ranked as the second most common cause of death and is the third most significant condition affecting disability-adjusted life years (DALYs) worldwide. Being the most prevalent and quality of life impacting post-stroke symptom ...