A quantum mechanical system or particle that is bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical particles, which can have any amount of energy. The term is commonly used for the energy levels of the electrons in atoms, ions, or molecules, which are bound by the electric field of the nucleus, but can also refer to energy levels of nuclei or vibrational or rotational energy levels in molecules. The energy spectrum of a system with such discrete energy levels is said to be quantized. In chemistry and atomic physics, an electron shell, or principal energy level, may be thought of as the orbit of one or more electrons around an atom's nucleus. The closest shell to the nucleus is called the " shell" (also called "K shell"), followed by the " shell" (or "L shell"), then the " shell" (or "M shell"), and so on farther and farther from the nucleus. The shells correspond with the principal quantum numbers (n = 1, 2, 3, 4 ...) or are labeled alphabetically with letters used in the X-ray notation (K, L, M, N...). Each shell can contain only a fixed number of electrons: The first shell can hold up to two electrons, the second shell can hold up to eight (2 + 6) electrons, the third shell can hold up to 18 (2 + 6 + 10) and so on. The general formula is that the nth shell can in principle hold up to 2n2 electrons. Since electrons are electrically attracted to the nucleus, an atom's electrons will generally occupy outer shells only if the more inner shells have already been completely filled by other electrons. However, this is not a strict requirement: atoms may have two or even three incomplete outer shells. (See Madelung rule for more details.) For an explanation of why electrons exist in these shells see electron configuration. If the potential energy is set to zero at infinite distance from the atomic nucleus or molecule, the usual convention, then bound electron states have negative potential energy.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (30)
CH-110: Advanced general chemistry I
Le cours comporte deux parties. Les bases de la thermodynamique des équilibres et de la cinétique des réactions sont introduites dans l'une d'elles. Les premières notions de chimie quantique sur les é
PHYS-425: Quantum physics III
To introduce several advanced topics in quantum physics, including semiclassical approximation, path integral, scattering theory, and relativistic quantum mechanics
MSE-486: Organic electronic materials
This course will introduce students to the field of organic electronic materials. The goal of this course is to discuss the origin of electronic properties in organic materials, charge transport mecha
Show more
Related lectures (229)
Ground State Energy: Harmonic Oscillator and Perturbation
Covers the ground state and energy of harmonic oscillators and perturbations by bounded potentials.
Quantum Physics I
Explores the quantification of energy levels and stability in quantum physics, focusing on the hydrogen atom's behavior.
Many Body Perturbation: Solutions and Corrections
Covers solutions and corrections in many-body perturbation theory, emphasizing normalization conditions and electron-electron repulsion.
Show more
Related publications (616)

Absolute energy levels of liquid water from many-body perturbation theory with effective vertex corrections

Alfredo Pasquarello, Aleksei Tal, Thomas Bischoff

We demonstrate the importance of addressing the F vertex and thus going beyond the GW approximation for achieving the energy levels of liquid water in manybody perturbation theory. In particular, we consider an effective vertex function in both the polariz ...
Natl Acad Sciences2024

Plasmonically enhanced molecular junctions for investigation of atomic-scale fluctuations in self-assembled monolayers

Sakthi Priya Amirtharaj

Molecular junctions represent a fascinating frontier in the realm of nanotechnology and are one of thesmallest optoelectronic devices possible, consisting of individual molecules or a group of moleculesthat serve as the active element sandwiched between co ...
EPFL2024

Resonant Tip-Enhanced Raman Spectroscopy of a Single-Molecule Kondo System

Jiri Dolezal

Tip-enhanced Raman spectroscopy (TERS) under ultrahigh vacuum and cryogenic conditions enables exploration of the relations between the adsorption geometry, electronic state, and vibrational fingerprints of individual molecules. TERS capability of reflecti ...
Amer Chemical Soc2024
Show more
Related concepts (43)
Atomic electron transition
In atomic physics and chemistry, an atomic electron transition (also called an electronic (de-)excitation, atomic transition, or quantum jump) is a change (or jump) of an electron from one energy level to another within an atom or artificial atom. It appears discontinuous as the electron "jumps" from one quantized energy level to another, typically in a few nanoseconds or less. Electron transitions cause the emission or absorption of electromagnetic radiation in the form of quantized units called photons.
Quantum number
In quantum physics and chemistry, quantum numbers describe values of conserved quantities in the dynamics of a quantum system. Quantum numbers correspond to eigenvalues of operators that commute with the Hamiltonian—quantities that can be known with precision at the same time as the system's energy—and their corresponding eigenspaces. Together, a specification of all of the quantum numbers of a quantum system fully characterize a basis state of the system, and can in principle be measured together.
Schrödinger equation
The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. The equation is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933. Conceptually, the Schrödinger equation is the quantum counterpart of Newton's second law in classical mechanics.
Show more
Related MOOCs (3)
Basic Steps in Magnetic Resonance
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 2)
The first MOOC to provide an extensive introduction to synchrotron and XFEL facilities and associated techniques and applications.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.