Nanoelectromechanical systems (NEMS) are a class of devices integrating electrical and mechanical functionality on the nanoscale. NEMS form the next logical miniaturization step from so-called microelectromechanical systems, or MEMS devices. NEMS typically integrate transistor-like nanoelectronics with mechanical actuators, pumps, or motors, and may thereby form physical, biological, and chemical sensors. The name derives from typical device dimensions in the nanometer range, leading to low mass, high mechanical resonance frequencies, potentially large quantum mechanical effects such as zero point motion, and a high surface-to-volume ratio useful for surface-based sensing mechanisms. Applications include accelerometers and sensors to detect chemical substances in the air.
As noted by Richard Feynman in his famous talk in 1959, "There's Plenty of Room at the Bottom," there are many potential applications of machines at smaller and smaller sizes; by building and controlling devices at smaller scales, all technology benefits. The expected benefits include greater efficiencies and reduced size, decreased power consumption and lower costs of production in electromechanical systems.
In 1960, Mohamed M. Atalla and Dawon Kahng at Bell Labs fabricated the first MOSFET with a gate oxide thickness of 100 nm. In 1962, Atalla and Kahng fabricated a nanolayer-base metal–semiconductor junction (M–S junction) transistor that used gold (Au) thin films with a thickness of 10 nm. In 1987, Bijan Davari led an IBM research team that demonstrated the first MOSFET with a 10 nm oxide thickness. Multi-gate MOSFETs enabled scaling below 20 nm channel length, starting with the FinFET. The FinFET originates from the research of Digh Hisamoto at Hitachi Central Research Laboratory in 1989. At UC Berkeley, a group led by Hisamoto and TSMC's Chenming Hu fabricated FinFET devices down to 17 nm channel length in 1998.
In 2000, the first very-large-scale integration (VLSI) NEMS device was demonstrated by researchers at IBM.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course contains lectures covering the latest research and development done in the field of micro-/nano- manufacturing methods and processes.It consists on an intensive 5 days training and is d
Students will learn simple theoretical models, the theoretical background of finite element modeling as well as its application to modeling charge, mass and heat transport in electronic, fluidic and e
This class adresses scaling laws in MEMS/NEMS. The dominant physical effects and scaling effects when downsizing sensors and actuators in microsystems are discussed, across a broad range of actuation
Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical properties need to be studied extensively. Some of these candidates include: hybrid molecular/semiconductor electronics, one-dimensional nanotubes/nanowires (e.g. silicon nanowires or carbon nanotubes) or advanced molecular electronics.
Molecular machines are a class of molecules typically described as an assembly of a discrete number of molecular components intended to produce mechanical movements in response to specific stimuli, mimicking macromolecular devices such as switches and motors. Naturally occurring or biological molecular machines are responsible for vital living processes such as DNA replication and ATP synthesis. Kinesins and ribosomes are examples of molecular machines, and they often take the form of multi-protein complexes.
Nanotechnology, often shortened to nanotech, is the use of matter on atomic, molecular, and supramolecular scales for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defined nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm).
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Molecular junctions represent a fascinating frontier in the realm of nanotechnology and are one of thesmallest optoelectronic devices possible, consisting of individual molecules or a group of moleculesthat serve as the active element sandwiched between co ...
EPFL2024
, , ,
A water permeation sensor suitable for monitoring and quantitatively assessing ultra-low permeability of thin film encapsulations engineered for bioelectronic microdevices, its fabrication as well as device comprising the same are disclosed herein. ...
Surface functionalization of 1D materials such as silicon nanowires is a critical preparation technology for biochemical sensing. However, existing nonselective functionalization techniques result in nonlocal binding and contamination, with potential devic ...