What's the Frequency, Kenneth?: Sublinear Fourier Sampling Off the Grid
Related publications (34)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Weighted flow time is a fundamental and very well-studied objective function in scheduling. In this paper, we study the setting of a single machine with preemptions. The input consists of a set of jobs, characterized by their processing times, release time ...
Optimization is a fundamental tool in modern science. Numerous important tasks in biology, economy, physics and computer science can be cast as optimization problems. Consider the example of machine learning: recent advances have shown that even the most s ...
Weighted least squares polynomial approximation uses random samples to determine projections of functions onto spaces of polynomials. It has been shown that, using an optimal distribution of sample locations, the number of samples required to achieve quasi ...
In this thesis we give new algorithms for two fundamental graph problems. We develop novel ways of using linear programming formulations, even exponential-sized ones, to extract structure from problem instances and to guide algorithms in making progress. S ...
Many modern services need to routinely perform tasks on a large scale. This prompts us to consider the following question:How can we design efficient algorithms for large-scale computation?In this thesis, we focus on devising a general strategy to addr ...
Clustering is a method for discovering structure in data, widely used across many scientific disciplines. The two main clustering problems this dissertation considers are K-means and K-medoids. These are NP-hard problems in the number of samples and cluste ...
We consider the problem of sampling at unknown locations. We prove that, in this setting, if we take arbitrarily many samples of a polynomial or real bandlimited signal, it is possible to find another function in the same class, arbitrarily far away from t ...
We consider the problem of testing graph cluster structure: given access to a graph G = (V, E), can we quickly determine whether the graph can be partitioned into a few clusters with good inner conductance, or is far from any such graph? This is a generali ...
In this paper, we study sampling from a posterior derived from a neural network. We propose a new probabilistic model consisting of adding noise at every pre- and post-activation in the network, arguing that the resulting posterior can be sampled using an ...
A CUR approximation of a matrix A is a particular type of low-rank approximation where C and R consist of columns and rows of A, respectively. One way to obtain such an approximation is to apply column subset selection to A and its transpose. In this work, ...