Abstract simplicial complexIn combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely combinatorial description of the geometric notion of a simplicial complex. For example, in a 2-dimensional simplicial complex, the sets in the family are the triangles (sets of size 3), their edges (sets of size 2), and their vertices (sets of size 1).
Adjoint functorsIn mathematics, specifically , adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems (i.e.
Higher category theoryIn mathematics, higher category theory is the part of at a higher order, which means that some equalities are replaced by explicit arrows in order to be able to explicitly study the structure behind those equalities. Higher category theory is often applied in algebraic topology (especially in homotopy theory), where one studies algebraic invariants of spaces, such as their fundamental . An ordinary has and morphisms, which are called 1-morphisms in the context of higher category theory.
Quasi-categoryIn mathematics, more specifically , a quasi-category (also called quasicategory, weak Kan complex, inner Kan complex, infinity category, ∞-category, Boardman complex, quategory) is a generalization of the notion of a . The study of such generalizations is known as . Quasi-categories were introduced by . André Joyal has much advanced the study of quasi-categories showing that most of the usual basic and some of the advanced notions and theorems have their analogues for quasi-categories.
SI derived unitSI derived units are units of measurement derived from the seven SI base unit specified by the International System of Units (SI). They can be expressed as a product (or ratio) of one or more of the base units, possibly scaled by an appropriate power of exponentiation (see: Buckingham π theorem). Some are dimensionless, as when the units cancel out in ratios of like quantities.
Quillen adjunctionIn homotopy theory, a branch of mathematics, a Quillen adjunction between two C and D is a special kind of adjunction between that induces an adjunction between the Ho(C) and Ho(D) via the total derived functor construction. Quillen adjunctions are named in honor of the mathematician Daniel Quillen. Given two closed model categories C and D, a Quillen adjunction is a pair (F, G): C D of adjoint functors with F left adjoint to G such that F preserves cofibrations and trivial cofibrations or, equivalently by the closed model axioms, such that G preserves fibrations and trivial fibrations.
HomotopyIn topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from ὁμός "same, similar" and τόπος "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (həˈmɒtəpiː, ; ˈhoʊmoʊˌtoʊpiː, ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. In practice, there are technical difficulties in using homotopies with certain spaces.
Weak equivalence (homotopy theory)In mathematics, a weak equivalence is a notion from homotopy theory that in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a . A model category is a with classes of morphisms called weak equivalences, fibrations, and cofibrations, satisfying several axioms. The associated of a model category has the same objects, but the morphisms are changed in order to make the weak equivalences into isomorphisms.
Homotopy colimit and limitIn mathematics, especially in algebraic topology, the homotopy limit and colimitpg 52 are variants of the notions of and colimit extended to the homotopy category . The main idea is this: if we have a diagramconsidered as an object in the , (where the homotopy equivalence of diagrams is considered pointwise), then the homotopy limit and colimits then correspond to the and coconewhich are objects in the homotopy category , where is the category with one object and one morphism.
Bousfield localizationIn , a branch of mathematics, a (left) Bousfield localization of a replaces the model structure with another model structure with the same cofibrations but with more weak equivalences. Bousfield localization is named after Aldridge Bousfield, who first introduced this technique in the context of localization of topological spaces and spectra. Given a class C of morphisms in a M the left Bousfield localization is a new model structure on the same category as before.