Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper, we formulate a novel hierarchical controller for walking of torque controlled humanoid robots. Our method uses a whole body optimization approach which generates joint torques, given Cartesian accelerations of different points on the robot. ...
Quadrupedal animals move through their environments with unmatched agility and grace. An important part of this is the ability to choose between different gaits in order to travel optimally at a certain speed or to robustly deal with unanticipated perturba ...
We present robot design and results from locomotion experiments with a novel, compliant quadruped robot: Cheetah-cub. The robot's leg configuration is based on a spring-loaded, panthograph-mechanism with multiple segments. A dedicated open-loop, joint-spac ...
Behavioral performances of our legged robots are still far behind those of biological systems. Energy efficiency and locomotion velocity of our robots, for example, are orders of magnitude lower than those of animals, and in order to fill the gap, it requi ...
In this paper we present an approach to the problem of stabilizating the gaze of legged robots using Adaptive Frequency Oscillators to learn the frequency, phase and amplitude of the optical flow and generate compensatory commands during robot locomotion. ...
In this work we apply optimal control to create running gaits for the model of an electrically driven one legged hopper, and compare the results obtained for five different objective functions. By using high compliant series elastic actuators, the motions ...
The process of finding working gaits for legged robots always, to different extents, includes manual tuning, systematic search, or optimization of control parameters. This process populates a dataset of control parameter vectors and respective robot behavi ...
Motion control of bio-inspired mobile robotic platforms can prove a challenging problem. In particular, models for the considered type of systems may prove nonlinear, uncertain, and fairly complicated. To address these issues, use of an output predictor-ba ...
Drawing inspiration from nature, this paper introduces and compares two compliant robotic legs that are able to perform precise joint torque and position control, enable passive adaption to the environment, and allowfor the exploitation of natural dynamic ...
Institute of Electrical and Electronics Engineers2013
In this paper we present a closed-loop optimal control approach for the online control of a legged robot locomotion, particularly the hopping of a simulated monoped robot. Modeling is done based on the spring loaded inverted pendulum (SLIP) model suggested ...