Underdetermined systemIn mathematics, a system of linear equations or a system of polynomial equations is considered underdetermined if there are fewer equations than unknowns (in contrast to an overdetermined system, where there are more equations than unknowns). The terminology can be explained using the concept of constraint counting. Each unknown can be seen as an available degree of freedom. Each equation introduced into the system can be viewed as a constraint that restricts one degree of freedom.
Lie theoryIn mathematics, the mathematician Sophus Lie (liː ) initiated lines of study involving integration of differential equations, transformation groups, and contact of spheres that have come to be called Lie theory. For instance, the latter subject is Lie sphere geometry. This article addresses his approach to transformation groups, which is one of the areas of mathematics, and was worked out by Wilhelm Killing and Élie Cartan. The foundation of Lie theory is the exponential map relating Lie algebras to Lie groups which is called the Lie group–Lie algebra correspondence.
P-adic valuationIn number theory, the p-adic valuation or p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n. It is denoted . Equivalently, is the exponent to which appears in the prime factorization of . The p-adic valuation is a valuation and gives rise to an analogue of the usual absolute value. Whereas the completion of the rational numbers with respect to the usual absolute value results in the real numbers , the completion of the rational numbers with respect to the -adic absolute value results in the p-adic numbers .
Formule de Viètevignette|upright=2.5|Formule de Viète énoncée dans son Variorum de rebus mathematicis responsorum, liber VIII (1593). En mathématiques, la formule de Viète est le produit infini suivant des radicaux imbriqués représentant le nombre π : Elle est nommée d'après François Viète, qui l'a publiée en 1593 dans son Variorum de rebus mathematicis responsorum, liber VIII. À l'époque où Viète publiait sa formule, des méthodes d'approximation de π étaient connues depuis longtemps.
Minimal prime idealIn mathematics, especially in commutative algebra, certain prime ideals called minimal prime ideals play an important role in understanding rings and modules. The notion of height and Krull's principal ideal theorem use minimal primes. A prime ideal P is said to be a minimal prime ideal over an ideal I if it is minimal among all prime ideals containing I. (Note: if I is a prime ideal, then I is the only minimal prime over it.) A prime ideal is said to be a minimal prime ideal if it is a minimal prime ideal over the zero ideal.
Nombre primaireEn mathématiques, plus précisément en arithmétique, un nombre primaire, également appelé puissance première, est une puissance à exposant entier positif non nul d'un nombre premier. Par exemple : 5=51, 9=32 et 16=24 sont des nombres primaires, alors que 6=2×3, 15=3×5 et 36=62=22×32 n'en sont pas. Les vingt plus petits nombres primaires sont : 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41. Les puissances premières sont tous les nombres entiers positifs qui ne sont divisibles que par un seul nombre premier.
Lemme de HenselEn mathématiques, le lemme de Hensel, est un résultat permettant de déduire l'existence d'une racine d'un polynôme à partir de l'existence d'une solution approchée. Il doit son nom au mathématicien du début du Kurt Hensel. Sa démonstration est analogue à celle de la méthode de Newton. La notion d'anneau hensélien regroupe les anneaux dans lesquels le lemme de Hensel s'applique. Les exemples les plus usuels sont Z (l'anneau des entiers p-adiques, pour p un nombre premier) et k[[t]] (l'anneau des séries formelles sur un corps k) ou plus généralement, les anneaux de valuation discrète complets.
Formule (mathématiques)En logique et en mathématiques, une formule est une suite finie d'objets, dotée de propriétés particulières qui rendent possible la syntaxe dans tous ces domaines. Étant donné un ensemble E et une fonction de poids p: E →N, une formule est un mot extrait de E obtenu par les deux règles de construction suivantes : un seul élément de E de poids 0 est une formule ; si t est un élément de poids n, pour toute suite de n formules F1, F2, ...., Fn, le mot concaténé tF1F2....Fn est une formule.
Règle de CramerLa règle de Cramer (ou méthode de Cramer) est un théorème en algèbre linéaire qui donne la solution d'un système de Cramer, c'est-à-dire un système d'équations linéaires avec autant d'équations que d'inconnues et dont le déterminant de la matrice de coefficients est non nul, sous forme de quotients de déterminants. En calcul, la méthode est moins efficace que la méthode de résolution de Gauss pour des grands systèmes (à partir de quatre équations) dont les coefficients dans le premier membre sont explicitement donnés.
Square matrixIn mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order . Any two square matrices of the same order can be added and multiplied. Square matrices are often used to represent simple linear transformations, such as shearing or rotation. For example, if is a square matrix representing a rotation (rotation matrix) and is a column vector describing the position of a point in space, the product yields another column vector describing the position of that point after that rotation.