Height functionA height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties (or a set of algebraic varieties) to the real numbers. For instance, the classical or naive height over the rational numbers is typically defined to be the maximum of the numerators and denominators of the coordinates (e.g.
Smooth morphismIn algebraic geometry, a morphism between schemes is said to be smooth if (i) it is locally of finite presentation (ii) it is flat, and (iii) for every geometric point the fiber is regular. (iii) means that each geometric fiber of f is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties. If S is the spectrum of an algebraically closed field and f is of finite type, then one recovers the definition of a nonsingular variety.
Forme modulaireEn mathématiques, une forme modulaire est une fonction analytique sur le demi-plan de Poincaré satisfaisant à une certaine sorte d'équation fonctionnelle et de condition de croissance. La théorie des formes modulaires est par conséquent dans la lignée de l'analyse complexe mais l'importance principale de la théorie tient dans ses connexions avec le théorème de modularité et la théorie des nombres.
HypersurfaceEn géométrie, une hypersurface est une généralisation du concept d'hyperplan, de courbe plane et de surface. Une hypersurface est une variété de dimension N - 1, qui est intégrée dans un espace de dimension N, généralement un espace euclidien ou un espace affine. Dans une espace de dimension 3, une hypersurface est une surface Dans une espace de dimension 2, une hypersurface est une ligne Une hypersurface est souvent définie par une seule équation du type f(x1,x2,...xN)=0.
Bernhard RiemannGeorg Friedrich Bernhard Riemann, né le à Breselenz, royaume de Hanovre, mort le à Selasca, hameau de la commune de Verbania, royaume d'Italie, est un mathématicien allemand. Influent sur le plan théorique, il a apporté de nombreuses contributions importantes à la topologie, l'analyse, la géométrie différentielle et au calcul, certaines d'entre elles ayant permis par la suite le développement de la relativité générale. Bernhard Riemann est né à Breselenz, un village du royaume de Hanovre.
Morphisme platEn géométrie algébrique, un morphisme de schémas peut être vu comme une famille de schémas paramétrée par les points de Y. La notion de platitude de f est une sorte de continuité de cette famille. Un morphisme est dit plat en un point x de X si l'homomorphisme d'anneaux induit par f est plat. On dit que f est un morphisme plat s'il est plat en tout point de X. On dit que f est fidèlement plat s'il est de plus surjectif. Si est un faisceau quasi-cohérent sur X.
Rational normal curveIn mathematics, the rational normal curve is a smooth, rational curve C of degree n in projective n-space Pn. It is a simple example of a projective variety; formally, it is the Veronese variety when the domain is the projective line. For n = 2 it is the plane conic Z0Z2 = Z, and for n = 3 it is the twisted cubic. The term "normal" refers to projective normality, not normal schemes. The intersection of the rational normal curve with an affine space is called the moment curve.
Algebraic geometry and analytic geometryIn mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables. The deep relation between these subjects has numerous applications in which algebraic techniques are applied to analytic spaces and analytic techniques to algebraic varieties.
Théorème de Faltingsvignette|Gerd Faltings. En théorie des nombres, le théorème de Faltings, précédemment connu sous le nom de conjecture de Mordell donne des résultats sur le nombre de solutions d'une équation diophantienne. Il a été conjecturé par le mathématicien anglais Louis Mordell en 1922 et démontré par Gerd Faltings en 1983, soit environ soixante ans après que la conjecture fut posée. Soit l'équation définie de la manière suivante : avec P un polynôme à coefficients rationnels.
Degree of an algebraic varietyIn mathematics, the degree of an affine or projective variety of dimension n is the number of intersection points of the variety with n hyperplanes in general position. For an algebraic set, the intersection points must be counted with their intersection multiplicity, because of the possibility of multiple components. For (irreducible) varieties, if one takes into account the multiplicities and, in the affine case, the points at infinity, the hypothesis of general position may be replaced by the much weaker condition that the intersection of the variety has the dimension zero (that is, consists of a finite number of points).