Endomorphism ringIn mathematics, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ring of X, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity.
Série formelleEn algèbre, les séries formelles sont une généralisation des polynômes autorisant des sommes infinies, de la même façon qu'en analyse, les séries entières généralisent les fonctions polynomiales, à ceci près que dans le cadre algébrique, les problèmes de convergence sont évités par des définitions ad hoc. Ces objets sont utiles pour décrire de façon concise des suites et pour trouver des formules pour des suites définies par récurrence via ce que l'on appelle les séries génératrices. Soit R un anneau commutatif (unifère).
Nombre p-adiquevignette|Les entiers 3-adiques, avec des représentations obtenues par dualité de Pontriaguine. En mathématiques, et plus particulièrement en théorie des nombres, pour un nombre premier fixé, les nombres p-adiques forment une extension particulière du corps des nombres rationnels, découverte par Kurt Hensel en 1897. Le corps commutatif des nombres -adiques peut être construit par complétion de , d'une façon analogue à la construction des nombres réels par les suites de Cauchy, mais pour une valeur absolue moins familière, nommée valeur absolue -adique.
Module projectifEn mathématiques, un module projectif est un module P (à gauche par exemple) sur un anneau A tel que pour tout morphisme surjectif f : N → M entre deux A-modules (à gauche) et pour tout morphisme g : P → M, il existe un morphisme h : P → N tel que g = fh, c'est-à-dire tel que le diagramme suivant commute : center Autrement dit : P est projectif si pour tout module N, tout morphisme de P vers un quotient de N se factorise par N.
Diviseur de zéroEn mathématiques, dans un anneau, un diviseur de zéro est un élément non nul dont le produit par un certain élément non nul est égal à zéro. Soient un anneau et tel que , où est l'élément neutre pour la loi . On dit que est un diviseur de zéro à gauche dans si On dit que est un diviseur de zéro à droite dans si On dit que est un diviseur de zéro dans si est un diviseur de zéro à gauche dans ou un diviseur de zéro à droite dans . Un élément de est dit régulier s'il n'est ni nul, ni diviseur de zéro.
Prime elementIn mathematics, specifically in abstract algebra, a prime element of a commutative ring is an object satisfying certain properties similar to the prime numbers in the integers and to irreducible polynomials. Care should be taken to distinguish prime elements from irreducible elements, a concept which is the same in UFDs but not the same in general. An element p of a commutative ring R is said to be prime if it is not the zero element or a unit and whenever p divides ab for some a and b in R, then p divides a or p divides b.
Racine de l'unitévignette|Les racines cinquièmes de l'unité (points bleus) dans le plan complexe. En mathématiques, une racine de l'unité est un nombre complexe dont une puissance entière non nulle vaut 1, c'est-à-dire tel qu'il existe un nombre entier naturel non nul n tel que . Ce nombre est alors appelé racine n-ième de l'unité. Une racine n-ième de l'unité est dite primitive si elle est d'ordre exactement n, c'est-à-dire si n est le plus petit entier strictement positif pour lequel l'égalité est réalisée.
Polynômethumb|Courbe représentative d'une fonction cubique. En mathématiques, un polynôme est une expression formée uniquement de produits et de sommes de constantes et d'indéterminées, habituellement notées X, Y, Z... Ces objets sont largement utilisés en pratique, ne serait-ce que parce qu'ils donnent localement une valeur approchée de toute fonction dérivable (voir l'article Développement limité) et permettent de représenter des formes lisses (voir l'article Courbe de Bézier, décrivant un cas particulier de fonction polynomiale).
NilpotentEn mathématiques, un élément x d'un anneau unitaire (ou même d'un pseudo-anneau) est dit nilpotent s'il existe un entier naturel n non nul tel que x = 0. Cette définition peut être appliquée en particulier aux matrices carrées. La matrice est nilpotente parce que A = 0. On parle alors de matrice nilpotente et d'endomorphisme nilpotent. Dans l'anneau Z/9Z, la classe de 3 est nilpotente parce que 3 est congru à 0 modulo 9. L'anneau des coquaternions contient un cône de nilpotents.
Radical de JacobsonEn algèbre, le radical de Jacobson d'un anneau commutatif est l'intersection de ses idéaux maximaux. Cette notion est due à Nathan Jacobson qui le premier en a fait l'étude systématique. Un élément x appartient au radical de Jacobson de l'anneau A si et seulement si 1 + ax est inversible pour tout a de A. Notons J le radical de Jacobson de l'anneau commutatif A et exploitons le fait que (d'après le théorème de Krull) 1 + ax est non inversible si et seulement s'il appartient à un idéal maximal.