Développement limitéEn physique et en mathématiques, un développement limité (noté DL) d'une fonction en un point est une approximation polynomiale de cette fonction au voisinage de ce point, c'est-à-dire l'écriture de cette fonction sous la forme de la somme : d'une fonction polynomiale ; d'un reste négligeable au voisinage du point considéré. En physique, il est fréquent de confondre la fonction avec son développement limité, à condition que l'erreur (c’est-à-dire le reste) ainsi faite soit inférieure à l'erreur autorisée.
Équation aux dérivées partielles hyperboliqueEn mathématiques, un problème hyperbolique ou équation aux dérivées partielles hyperbolique est une classe d'équations aux dérivées partielles (EDP) modélisant des phénomènes de propagation, émergeant par exemple naturellement en mécanique. Un archétype d'équation aux dérivées partielles hyperbolique est l'équation des ondes : Les solutions des problèmes hyperboliques possèdent des propriétés ondulatoires. Si une perturbation localisée est faite sur la donnée initiale d'un problème hyperbolique, alors les points de l'espace éloignés du support de la perturbation ne ressentiront pas ses effets immédiatement.
Generalized functionIn mathematics, generalized functions are objects extending the notion of functions. There is more than one recognized theory, for example the theory of distributions. Generalized functions are especially useful in making discontinuous functions more like smooth functions, and describing discrete physical phenomena such as point charges. They are applied extensively, especially in physics and engineering. A common feature of some of the approaches is that they build on operator aspects of everyday, numerical functions.
Théorème de factorisation de WeierstrassEn mathématiques, et plus précisément en analyse, le théorème de factorisation de Weierstrass, nommé en l'honneur de Karl Weierstrass, affirme que les fonctions entières peuvent être représentées par un produit infini, appelé produit de Weierstrass, mettant en jeu leurs zéros. Du développement en série entière suivant pour u ∈ ]–1;1[ : on déduit que la fonction tronquée aux m premiers termes est sensiblement égale à 1 sur [–1 ; 1], sauf dans un voisinage de u = 1 où elle admet un zéro d'ordre 1.
Interpolation linéaireright|300px|thumb|Les points rouges correspondent aux points (xk,yk), et la courbe bleue représente la fonction d'interpolation, composée de segments de droite. L’interpolation linéaire est la méthode la plus simple pour estimer la valeur prise par une fonction continue entre deux points déterminés (interpolation). Elle consiste à utiliser pour cela la fonction affine (de la forme f(x) = m.x + b) passant par les deux points déterminés.
Direct comparison testIn mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing the convergence or divergence of an infinite series or an improper integral. In both cases, the test works by comparing the given series or integral to one whose convergence properties are known.
Décomposition de domaineEn physique mathématique et en analyse numérique la décomposition de domaine est un procédé de résolution - généralement numérique - d'un problème obtenue en découpant le domaine de calcul en divers sous-domaines, avec ou sans recouvrements. Cette méthode est généralement utilisée dans les problèmes physiques faisant intervenir des échelles très différentes ou couplant des phénomènes de nature différente et en calcul numérique pour l'utilisation de machines de calcul à architecture parallèle.
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Groupe localement compactUn groupe localement compact est, en mathématiques, un groupe topologique dont l'espace topologique sous-jacent est localement compact. Ces propriétés permettent de définir une mesure, dite mesure de Haar, et donc de calculer des intégrales et des moyennes ou encore une transformée de Fourier. Ces propriétés à la croisée de l'algèbre générale, de la topologie et de la théorie de la mesure sont particulièrement intéressantes, notamment pour leurs applications en physique.
PseudovecteurEn physique, un pseudovecteur ou vecteur axial est un vecteur de dimension 3 dont le sens dépend de l'orientation de l'espace. Plus précisément, l'inversion de l'orientation de l'espace se traduit par un changement de sens du pseudovecteur qui est donc changé en son opposé. On parle de pseudovecteurs par opposition aux vecteurs « ordinaires » (dits polaires) qui sont invariants par une telle inversion. Le produit vectoriel de deux vecteurs polaires est l'exemple type du pseudovecteur.